Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 338: 117761, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37030142

ABSTRACT

Decreasing greenhouse gas (GHG) emissions and enhancing soil carbon (C) sequestration in cropland are necessary to achieve carbon neutrality at national scale. The major objective of this study is to quantify the GHG mitigation potential of adopted climate resilient (CR) practices in CR villages using Ex-ACT tool developed by Food and Agriculture Organization (FAO). Intensively cultivated area of Punjab and Haryana was selected for carrying out this study. In both the states, villages were selected by considering the climate for past 30 years. In the selected villages, a set of CR practices were implemented in annuals, perennials, irrigated rice, fertilizer use, land use change and livestock and quantified the GHG mitigation potential in these villages for next twenty years. The tool predicted that the CR practices adopted were successful in enhancing the overall sink (carbon balance) in all the study villages. The villages of Punjab had recorded higher mitigation potential as compared to the villages of Haryana. The overall sink potential in these villages ranged from -354 to -38309 Mg CO2-eq. The change in sink potential varied from 3.16 to 112% with lowest in Radauri and highest in Badhauchhi kalan village. The sink potential got doubled in Badhauchhi kalan village due to stopping rice straw burning and increase in area under perennials by 25%. The source potential varied from 6.33 to -7.44% across the study villages. Even with the implementation of NICRA, there was increase in source by 5.58 and 6.33% in Killi Nihal Singh Wala and Radauri due to irrigated rice, land use change and livestock. Majorly, rice straw burning was seen in most of the study villages, yet, with proper residue management and adoption of CR practices (mainly intermittent flooding) in rice cultivation resulted in emissions reduction up to 5-26% with enhanced productivity up to 15-18%, which can be considered for scaling up. Fertilizer management reduced the emissions by average of 13% across the study villages. Farm gate emission intensity per ton of milk and rice recorded highest emission intensity compared to annuals and perennials suggesting strict implementation of CR practices in rice cultivation and livestock sector. Implementation and scaling up of CR practices could potentially reduce the emissions and make the village C negative in intensive rice-wheat production system.


Subject(s)
Greenhouse Gases , Oryza , Greenhouse Effect , Carbon/analysis , Fertilizers , Agriculture/methods , Soil/chemistry
2.
Front Microbiol ; 13: 1041124, 2022.
Article in English | MEDLINE | ID: mdl-36817102

ABSTRACT

Pulses are an important source of energy and protein, essential amino acids, dietary fibers, minerals, and vitamins, and play a significant role in addressing global nutritional security. The global pulse area, production, and average productivity increased from 1961 to 2020 (60 years). Pulses are usually grown under rainfed, highly unstable, and complex production environments, with substantial variability in soil and environmental factors, high year-to-year output variability, and variation in soil moisture. Since the last six decades, there is not much satisfactory improvement in the yield of pulses because of their cultivation in harsh environments, coupled with their continuous ignorance of the farmers and governments in policy planning. As a result, the global food supplies through pulses remained negligible and amounted to merely ~1.0% of the total food supply and 1.2% of the vegan food system. In this situation, protein-rich food is still a question raised at the global level to make a malnutrition-free world. Pulses are a vital component of agricultural biological diversity, essential for tackling climate change, and serve as an energy diet for vegetarians. Pulses can mitigate climate change by reducing the dependence on synthetic fertilizers that artificially introduce nitrogen (N) into the soil. The high demand and manufacture of chemical fertilizers emit greenhouse gases (GHGs), and their overuse can harm the environment. In addition, the increasing demand for the vegetal protein under most global agroecosystems has to be met with under a stressed rainfed situation. The rainfed agroecosystem is a shelter for poor people from a significant part of the globe, such as Africa, South Asia, and Latin America. Nearly, 83% [over 1,260 million hectares (ha)] of cultivated land comes under rainfed agriculture, contributing significantly to global food security by supplying over 60% of the food. In rainfed areas, the limitation of natural resources with the shrinking land, continuous nutrient mining, soil fertility depletion, declining productivity factor, constantly depleting water availability, decreasing soil carbon (C) stock, augmented weed menace, ecological instability, and reduced system productivity are creating a more challenging situation. Pulses, being crops of marginal and semi-marginal soils of arid and semi-arid climates, require less input for cultivation, such as water, nutrients, tillage, labor, and energy. Furthermore, accommodation of the area for the cultivation of pulses reduces the groundwater exploitation, C and N footprints, agrochemical application in the cropping systems, and ill effects of climate change due to their inherent capacity to withstand harsh soil to exhibit phytoremediation properties and to stand well under stressed environmental condition. This article focuses on the role of pulses in ecological services, human wellbeing, soil, environmental health, and economic security for advanced sustainability. Therefore, this study will enhance the understanding of productivity improvement in a system-based approach in a rainfed agroecosystem through the involvement of pulses. Furthermore, the present study highlighted significant research findings and policy support in the direction of exploring the real yield potential of pulses. It will provide a road map to producers, researchers, policymakers, and government planners working on pulses to promote them in rainfed agroecosystems to achieve the United Nations (UN's) Sustainable Development Goals (SDGs).

3.
PLoS One ; 16(10): e0258166, 2021.
Article in English | MEDLINE | ID: mdl-34606515

ABSTRACT

Understanding the spatial spreading patterns of plant-available sulphur (S) (AS) and plant-available micronutrients (available zinc (AZn), available iron (AFe), available copper (ACu), available manganese (AMn) and available boron (AB)) in soils, especially in coastal agricultural soils subjected to various natural and anthropogenic activities, is vital for sustainable crop production by adopting site-specific nutrient management (SSNM) strategies. We studied the spatial distribution patterns of AS, AZn, AFe, ACu, AMn, and AB in cultivated soils of coastal districts of India using geostatistical approaches. Altogether 39,097 soil samples from surface (0 to 15 cm depth) layers were gathered from farm lands of 68 coastal districts. The analysis of soil samples was carried out for soil pH, electrical conductivity (EC), soil organic carbon (SOC) and AS, AZn, AFe, ACu, AMn, and AB. Soil pH, EC and SOC varied from 3.70 to 9.90, 0.01 to 7.45 dS m-1 and 0.02 to 3.74%, respectively. The concentrations of AS, AZn, AFe, ACu, AMn, and AB varied widely in the study area with their corresponding mean values were 37.4±29.4, 1.50±1.53, 27.9±35.1, 2.14±1.74, 16.9±18.4 and 1.34±1.52 mg kg-1, respectively. The coefficient of variation values of analyzed soil parameters varied from 14.6 to 126%. The concentrations of AS, AZn, AFe, ACu, AMn, and AB were negatively and significantly correlated with soil pH and positively and significantly correlated with SOC. The geostatistical analysis indicated stable, Gaussian and exponential best-fit semivariogram models with moderate to strong spatial dependence for available nutrients. The generated spatial spreading maps revealed different distribution patterns for AS, AZn, AFe, ACu, AMn, and AB. There were variations in spatial spreading patterns of AS, AZn, AFe, ACu, AMn, and AB in east- and west-coastal area. About 62, 35, 12, 0.4, 23 and 45% of the study area had deficiency of AS, AZn, AFe, ACu, AMn, and AB, respectively. The spatial spreading maps will be highly useful for SSNM in the cultivated coastal soils of the country. This study could also be used as a base for assessing spatial spreading patterns of soil parameters in cultivated coastal areas of other parts of the world.


Subject(s)
Micronutrients/analysis , Soil/chemistry , Sulfur/analysis , Agriculture , Geography , India , Statistics as Topic
4.
3 Biotech ; 7(4): 232, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28688037

ABSTRACT

Beneficial aspects of endophytic microorganisms have motivated researchers to explore plant endophytic world. The present study was aimed to isolate and characterize the seed-borne endophytic bacteria from diverse maize genotypes. Eighty maize seed endophytic bacteria (MSEB), isolated from 30 maize genotypes, were characterized using polyphasic approach. The dendrograms and phylogenetic tree generated on the basis of ARDRA analysis and metabolic profiling of endophytic bacteria revealed genotypic and biochemical diversity among MSEB. The 16S rDNA sequence analysis revealed Bacillus as the most dominant encountered genus affiliated with Phylum Firmicutes. Few isolates belonged to genus Staphylococcus, whereas one isolate was identified as Corynebacterium sp. under Phylum Actinobacteria. Majority of the MSEB isolates exhibited antagonism against phytopathogenic fungi, production of ammonia, and secretion of lytic enzymes; some isolates also exhibited indole acetic acid production, the traits of which can be helpful in endophytic establishment and advantageous to the host plant. Besides, many MSEB exhibited tolerance to salinity (10%), osmotic stress (40% PEG6000), and temperature (60 °C), indicating their possible application under stress conditions. Endophytic nature of the selected MSEB isolates was confirmed by tracking their presence in shoots, leaves, and roots of the host seedlings with the help of biochemical marker (rifampicin resistance). Thus, the MSEB identified in the present study can be explored as potential bioinputs for improving plant growth and productivity under stressed conditions, besides helping in understanding the plant-endophyte interactions.

5.
J Photochem Photobiol B ; 160: 86-95, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27101276

ABSTRACT

Optimum potassium (K) nutrition in semi-arid regions may help crop plants to overcome constraints in their growth and development such as moisture stress, leading to higher productivity of rainfed crops, thus judicious K management is essential. A study was conducted to evaluate the importance of K nutrition on physiological processes like photosynthesis through chlorophyll a fluorescence and chlorophyll fluorescence induction kinetics (OJIP) of rainfed crops viz., maize (Zea mays L.), pearl millet (Pennisetum glaucum), groundnut (Arachis hypogaea), sunflower (Helianthus annuus), castor (Ricinus communis L.) and cotton (Gossypium hirsutum) under water stress conditions by studying their growth attributes, water relations, yield, K uptake and use efficiency under varied K levels. Highest chlorophyll content was observed under K60 in maize and pearl millet. Narrow and wide Chl a:b ratio was observed in castor and groundnut respectively. The fluorescence yield decreased in the crops as K dosage increased, evidenced by increasing of all points (O, J, I and P) of the OJIP curves. The fluorescence transient curve for K60 was lower than K0 and K40 for all the crops. Potassium levels altered the fluorescence induction and impaired photosynthetic systems in all the crops studied. There was no distinct trend observed in leaf water potential of crops under study. Uptake of K was high in sunflower with increased rate of K application. Quantitatively, K uptake by castor crop was lesser compared to all other crops. Our results indicate that the yield reduction under low K was due to the low capacity of the crops to translocate K from non-photosynthetic organs such as stems and petioles to upper leaves and harvested organs and this in turn influenced the capacity of the crops to produce a high economic yield per unit of K taken up thus reducing utilization efficiency of K.


Subject(s)
Chlorophyll/metabolism , Crops, Agricultural/metabolism , Potassium/metabolism , Rain , Fluorescence , Kinetics
6.
Sci Total Environ ; 487: 587-603, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24210647

ABSTRACT

Severe soil organic carbon (SOC) depletion is a major constraint in rainfed agroecosystems in India because it directly influences soil quality, crop productivity and sustainability. The magnitude of soil organic, inorganic and total carbon stocks in the semi-arid bioclimate is estimated at 2.9, 1.9 and 4.8 Pg respectively. Sorghum, finger millet, pearl millet, maize, rice, groundnut, soybean, cotton, food legumes etc. are predominant crop production systems with a little, if any, recycling of organic matter. Data from the long term experiments on major rainfed production systems in India show that higher amount of crop residue C input (Mg/ha/y) return back to soil in soybean-safflower (3.37) system practiced in Vertisol region of central India. Long term addition of chemical fertilizer and organic amendments improved the SOC stock. For every Mg/ha increase in SOC stock in the root zone, there occurs an increase in grain yield (kg/ha) of 13, 101, 90, 170, 145, 18 and 160 for groundnut, finger millet, sorghum, pearl millet, soybean and rice, respectively. Long-term cropping without using any organic amendment and/or mineral fertilizers can severely deplete the SOC stock which is the highest in groundnut-finger millet system (0.92 Mg C/ha/y) in Alfisols. Some agroforestry systems also have a huge potential of C sequestration to the extent of 10Mg/ha/y in short rotation eucalyptus and Leucaena plantations. The critical level of C input requirements for maintaining SOC at the antecedent level ranges from 1.1 to 3.5 Mg C/ha/y and differs among soil type and production systems. National level policy interventions needed to promote sustainable use of soil and water resources include prohibiting residue burning, reducing deforestation, promoting integrated farming systems and facilitating payments for ecosystem services. A wide spread adoption of these measures can improve soil quality through increase in SOC sequestration and improvement in agronomic productivity of rainfed agroecosystems.


Subject(s)
Agriculture/methods , Carbon Sequestration , Carbon/analysis , Crops, Agricultural/growth & development , Soil/chemistry , Environmental Monitoring , India
SELECTION OF CITATIONS
SEARCH DETAIL
...