Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
2.
Plant Sci ; 298: 110594, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32771151

ABSTRACT

Loss/reduction of function of Mildew Locus O (MLO) genes clade V and MLO clade IV has been shown to be responsible for powdery mildew (PM) resistance in several plant species. Mungbean (Vigna radiata) genome possesses 18 MLO genes, VrMLO1 - VrMLO18. A previous study using mungbean F2 and BC1F1 populations derived from a cross between "CN60″ (susceptible) and "RUM5″ (resistance) demonstrated that QTL qPMRUM5-3 is a major QTL for PM resistance caused by Erysiphe polygoni and is the same with major QTL qPMV4718-3 that confers PM resistance in "V4718″ (resistance). In this study, bioinformatics analysis revealed VrMLO12 locates in the qPMRUM5-3 region. Fine mapping in the F2 and BC1F1 populations using newly developed DNA markers including gene-specific markers demonstrated association between VrMLO12 and the PM resistance. Sequence analyses of VrMLO12 revealed that compared to susceptible mungbeans, RUM5 and V4718 possess SNPs in exon 10 and exon 13. The SNPs caused amino acid changes of VrMLO12, A387S and A476 G, respectively. The change occurred in transmembrane 6 domain and calmodulin binding domain (CaMBD) of the VrMLO12 protein, respectively. qRT-PCR showed that transcript expression level of VrMLO12 in RUM5 challenged with and without by E. polygoni was significantly higher than that in CN60. Phylogenetic analysis revealed that in contrast to previous findings that MLO proteins associated with PM resistance belong to MLO clade V and MLO clade IV, VrMLO12 belongs to MLO clade II. The result suggested that VrMLO12 may function differently from the other MLOs that associated with PM susceptibility. Our findings provide insight into the PM resistance in mungbean and tools for mungbean breeding.


Subject(s)
Ascomycota/physiology , Chromosome Mapping , Plant Diseases/genetics , Plant Proteins/genetics , Vigna/genetics , Amino Acid Sequence , Disease Resistance/genetics , Phylogeny , Plant Diseases/microbiology , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Vigna/metabolism , Vigna/microbiology
3.
Plant Biotechnol J ; 17(2): 517-530, 2019 02.
Article in English | MEDLINE | ID: mdl-30059608

ABSTRACT

Jatropha curcas (physic nut), a non-edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up-regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed.


Subject(s)
Euphorbiaceae/enzymology , Jatropha/enzymology , Multigene Family , Phosphorus-Oxygen Lyases/metabolism , Biofuels , Chromosome Mapping , Euphorbiaceae/genetics , Euphorbiaceae/growth & development , Gene Expression Profiling , Jatropha/genetics , Jatropha/growth & development , Lipids/biosynthesis , Molecular Sequence Annotation , Phorbol Esters/metabolism , Phosphorus-Oxygen Lyases/genetics , Phylogeny , Plant Breeding , Plant Oils/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/growth & development
4.
PLoS One ; 13(12): e0200116, 2018.
Article in English | MEDLINE | ID: mdl-30562342

ABSTRACT

Zombi pea (Vigna vexillata (L.) A. Rich) is an underutilized crop belonging to the genus Vigna. Two domesticated forms of zombi pea are cultivated as crop plants; seed and tuber forms. The cultivated seed form is present in Africa, while the cultivated tuber form is present in a very limited part of Asia. Genetics of domestication have been investigated in most of cultivated Vigna crops by means of quantitative trait locus (QTL) mapping. In this study, we investigated genetics of domestication in zombi pea by QTL analysis using an F2 population of 139 plants derived from a cross between cultivated tuber form of V. vexillata (JP235863) and wild V. vexillata (AusTRCF66514). A linkage map with 11 linkage groups (LGs) was constructed from this F2 population using 145 SSR, 117 RAD-seq and 2 morphological markers. Many highly segregation distorted markers were found on LGs 5, 6, 7, 8, 10 and 11. Most of the distorted markers were clustered together and all the markers on LG8 were highly distorted markers. Comparing this V. vexillata linkage map with linkage maps of other four Vigna species demonstrated several genome rearrangements in V. vexillata. QTL analysis for 22 domestication-related traits was investigated by inclusive composite interval mapping in which 37 QTLs were identified for 18 traits; no QTL was detected for 4 traits. Number of QTLs detected in each trait ranged from 1 to 5 with an average of only 2.3. Five QTLs for tuber width and three QTLs for tuber weight. Interestingly, 2 QTLs each for tuber width and tuber weight detected on LG2 and LG4 were located at similar position and wild allele increased tuber width and weight. This indicated wild germplasm having small tuber have potential to increase yield of large tuber cultivated type. Large-effect QTLs (PVE > 20%) were on LG4 (pod length), LG5 (leaf size and seed thickness), and LG7 (for seed-related traits). Comparison of domestication-related QTLs of the zombi pea with those of cowpea (Vigna unguiculata), azuki bean (Vigna angularis), mungbean (Vigna radiata) and rice bean (Vigna umbellata) revealed that there was conservation of some QTLs for seed size, pod size and leaf size between zombi pea and cowpea and that QTLs associated with seed size (weight, length, width and thickness) in each species were clustered on same linkage.


Subject(s)
Crops, Agricultural/genetics , Gene Rearrangement , Genetic Linkage , Genome, Plant , Quantitative Trait Loci , Vigna/genetics , Crops, Agricultural/growth & development , Domestication , Vigna/growth & development
5.
J Genet ; 97(5): 1451-1456, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30555093

ABSTRACT

Yardlong bean (Vigna unguiculata ssp. sesquipedalis), a type of cowpea, is an important vegetable legume of Asia. Cercospora leaf spot (CLS) caused by Cercospora canescens and Psuedocercospora cruenta is an important phytopathological problem of the yardlong bean grown in tropical regions. The objectives of this study were to (i) determine mode of inheritance of resistance to CLS caused by C. canescens and P. cruenta, (ii) estimate the heritability of the resistance, (iii) estimate genetic effects on the resistance using six basic populations generated from the cross between the susceptible yardlong bean 'CSR12906' and the resistant grain cowpea (V.unguiculata spp. unguiculata) 'IT90K-59-120'. Segregation for the resistance to both fungi in the F2 population fitted both 3 : 1 ratio and 13 : 3 ratio of susceptible:resistant, while that in the BC2 ((CSR12906×IT90K-59-120)×IT90K- 59-120) population fitted a 1 : 1 ratio, suggesting one recessive gene or two genes with inhibitory gene action control the resistance. Generation mean analysis showed that a simple additive-dominance model was adequate to explain the genetic control of CLS disease resistance, indicating that a single gene controls the resistance. The average number of major genes (effective factors) controlling the resistance was estimated to be 1.05 and 0.92 for C. canescens and P. cruenta, respectively. The broad-sense heritability calculated for resistance to both diseases was higher than 0.90. Altogether, these results indicated that the resistance to CLS disease caused by C. canescens and P. cruenta in grain cowpea IT90K-59-120 is a highly heritable trait governed by a single major recessive gene.


Subject(s)
Disease Resistance/genetics , Edible Grain/genetics , Plant Diseases/genetics , Vigna/genetics , Algorithms , Ascomycota/physiology , Edible Grain/microbiology , Genes, Recessive/genetics , Genetics, Population , Host-Pathogen Interactions , Inheritance Patterns/genetics , Models, Genetic , Plant Diseases/microbiology , Vigna/microbiology
6.
PLoS One ; 13(12): e0208549, 2018.
Article in English | MEDLINE | ID: mdl-30521604

ABSTRACT

Jatropha (Jatropha curcas) is an oil-bearing plant used for biodiesel production. Construction of its standard karyotype and identification of the euchromatin/heterochromatin distribution associated with gene expression and meiotic recombination are essential to fully characterize its genome. Here, we developed a J. curcas karyotype based on meiotic pachytene chromosomes. In addition, a karyotype of J. integerrima, a useful species for jatropha breeding, was also constructed. Five out of eleven J. curcas chromosomes were metacentric, but only two were metacentric in J. integerrima. Almost all of the heterochromatin was distributed around the pericentric regions. The interstitial and distal regions were euchromatic without heterochromatic knobs, except for small heterochromatin regions associated with the subtelomeric repeat sequence JcSat1. These pericentric heterochromatin distribution patterns, together with chromosome structure data and the results of FISH probing with rDNA and JcSat1, allowed us to classify all chromosomes of both species. The two species had two 35S rDNA loci and one 5S rDNA locus; one 35S rDNA locus in J. integerrima was located on the interstitial region of the short arms. In addition, JcSat1 was found at only the heterochromatic ends of the J. curcas chromosome, not the J. integerrima chromosome. Despite the same chromosome number, the two pachytene chromosome-based karyotypes suggest variation in chromosome structure and distribution of repetitive DNAs in these two species.


Subject(s)
Chromosomes, Plant , Jatropha/genetics , Karyotype , Genetic Variation , In Situ Hybridization, Fluorescence , Pachytene Stage , Repetitive Sequences, Nucleic Acid
7.
Front Plant Sci ; 8: 1692, 2017.
Article in English | MEDLINE | ID: mdl-29033965

ABSTRACT

Nearly all mungbean cultivars are completely susceptible to seed bruchids (Callosobruchus chinensis and Callosobruchus maculatus). Breeding bruchid-resistant mungbean is a major goal in mungbean breeding programs. Recently, we demonstrated in mungbean (Vigna radiata) accession V2802 that VrPGIP2, which encodes a polygalacturonase inhibiting protein (PGIP), is the Br locus responsible for resistance to C. chinensis and C. maculatus. In this study, mapping in mungbean accession V2709 using a BC11F2 population of 355 individuals revealed that a single major quantitative trait locus, which controlled resistance to both C. chinensis and C. maculatus, was located in a 237.35 Kb region of mungbean chromosome 5 that contained eight annotated genes, including VrPGIP1 (LOC106760236) and VrPGIP2 (LOC106760237). VrPGIP1 and VrPGIP2 are located next to each other and are only 27.56 Kb apart. Sequencing VrPGIP1 and VrPGIP2 in "V2709" revealed new alleles for both VrPGIP1 and VrPGIP2, named VrPGIP1-1 and VrPGIP2-2, respectively. VrPGIP2-2 has one single nucleotide polymorphism (SNP) at position 554 of wild type VrPGIP2. This SNP is a guanine to cystine substitution and causes a proline to arginine change at residue 185 in the VrPGIP2 of "V2709". VrPGIP1-1 has 43 SNPs compared with wild type and "V2802", and 20 cause amino acid changes in VrPGIP1. One change is threonine to proline at residue 185 in VrPGIP1, which is the same as in VrPGIP2. Sequence alignments of VrPGIP2 and VrPGIP1 from "V2709" with common bean (Phaseolus vulgaris) PGIP2 revealed that residue 185 in VrPGIP2 and VrPGIP1 contributes to the secondary structures of proteins that affect interactions between PGIP and polygalacturonase, and that some amino acid changes in VrPGIP1 also affect interactions between PGIP and polygalacturonase. Thus, tightly linked VrPGIP1 and VrPGIP2 are the likely genes at the Br locus that confer bruchid resistance in mungbean "V2709".

8.
Genes (Basel) ; 8(8)2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28820491

ABSTRACT

Jatropha (Jatropha curcas L.) is an oil-bearing plant that has potential to be cultivated as a biodiesel crop. The seed cake after oil extraction has 40-50% protein that can be used in animal feeds. A major limitation in utilizing the cake is the presence of phorbol esters (PE), a heat-tolerant toxic chemical. To identify the quantitative trait loci (QTLs) for PE, we constructed a genetic linkage map from an F2 population of 95 individuals from a cross "Chai Nat" × "M10" using 143 simple sequence repeat (SSR) markers. M10 is low in seed PE while Chai Nat is high. Seeds from each F2 individual were quantified for PE content by high performance liquid chromatography. A single marker analysis revealed five markers from linkage group 3 (LG3) and nine markers from LG8 associated with seed PE. Inclusive composite interval mapping identified two QTLs, each on LG3 (qPE3.1) and LG8 (qPE8.1) responsible for the PE. qPE3.1 and qPE8.1 accounted for 14.10%, and 15.49% of total variation in seed PE, respectively. Alelle(s) from M10 at qPE3.1 increased seed PE, while at qPE8.1 decreased seed PE. qPE3.1 is a new loci for PE, while qPE8.1 is the same locus with that reported recently for PE.

9.
Genetica ; 145(2): 189-200, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28233217

ABSTRACT

Zombi pea (Vigna vexillata (L.) A. Rich) is an underutilized legume species and a useful gene source for resistance to biotic and abiotic stresses, although there is little understanding on its genetic diversity and structure. In this study, 422 (408 wild and 14 cultivated) accessions of zombi pea from diverse origins (201 from Africa, 126 from America, 85 from Australia, 5 from Asia and 5 from unknown origin) were analyzed with 20 simple sequence repeat (SSR) markers to determine its genetic diversity and genetic structure. The SSR markers detected 273 alleles in total with a mean of 13.6 alleles per locus. Polymorphism information content values of the markers varied from 0.58 to 0.90 with an average of 0.76. Overall gene diversity was 0.715. Gene diversity and average allelic richness was highest in Africa (0.749 and 8.08, respectively) and lowest in America (0.435 and 4.10, respectively). Nei's genetic distance analysis revealed that the highest distance was between wild Australia and cultivated Africa (0.559), followed by wild West Africa and wild Australia (0.415). STRUCTURE, neighbor-joining (NJ), and principal coordinate analyses consistently showed that these zombi pea accessions were clustered into three major groups, viz. America, Africa and Asia, and Australia. NJ tree also suggested that American and Australian accessions are originated from East African zombi peas, and that the cultivated accessions from Africa and Asia were genetically distinct, while those from America were clustered with some cultivated accessions from Africa. These results suggest that Africa is the center of origin and diversity of zombi pea, and that domestication of this pea took place more than once in different regions.


Subject(s)
Gene Pool , Genetic Variation , Microsatellite Repeats/genetics , Vigna/genetics , Africa , Alleles , Australia , Genetics, Population , Genotype , Geography , Phylogeny , Species Specificity , Vigna/classification
10.
Front Plant Sci ; 7: 830, 2016.
Article in English | MEDLINE | ID: mdl-27375671

ABSTRACT

Mungbean (Vigna radiata L.) is a cleistogamous plant in which flowers are pollinated before they open, which prevents yield improvements through heterosis. We previously generated a chasmogamous mutant (CM) mungbean in which open flowers are pollinated. In this study, we developed insertion/deletion (indel) markers based on the transcriptome differences between CM and Sulu-1 (i.e., normal flowering) plants. An F2 population derived from a cross between CM and Sulu-1 was used for gene mapping. Segregation analyses revealed that a single recessive gene regulates the production of chasmogamous flowers. Using newly developed indel and simple sequence repeat markers, the cha gene responsible for the chasmogamous flower trait was mapped to a 277.1-kb segment on chromosome 6. Twelve candidate genes were detected in this segment, including Vradi06g12650, which encodes a YUCCA family protein associated with floral development. A single base pair deletion producing a frame-shift mutation and a premature stop codon in Vradi06g12650 was detected only in CM plants. This suggested that Vradi06g12650 is a cha candidate gene. Our results provide important information for the molecular breeding of chasmogamous mungbean lines, which may serve as new genetic resources for hybrid cultivar development.

11.
Theor Appl Genet ; 129(9): 1673-83, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27220975

ABSTRACT

KEY MESSAGE: The Br locus confers bruchid resistance in mungbean; VrPGIP2 (encoding a polygalacturonase inhibitor) is a strong candidate gene for this resistance. The VrPGIP2 sequence differs between resistant and susceptible lines. Azuki bean weevil (Callosobruchus chinensis) and cowpea weevil (Callosobruchus maculatus) are serious insect pests of mungbean during storage. Bruchid resistance in mungbean is controlled by a single dominant locus, Br. Although the Br locus has been located on a genetic map, molecular basis and function of the gene remain unknown. In this study, high-resolution mapping using a BC11F2 population of 418 plants derived from a cross between 'Kamphaeng Saen 1' (KPS1; susceptible) and 'V2802' (resistant) using simple sequence repeat (SSR) markers delimited the Br locus to a genomic region of 38 Kb of chromosome 5 containing two annotated genes. EST-SSR marker DMB-SSR158 co-segregated perfectly with the Br locus. Bioinformatics analyses revealed that DMB-SSR158 corresponds to a gene encoding a polygalacturonase inhibitor (polygalacturonase-inhibiting protein PGIP) and was designated as VrPGIP2. Comparison of VrPGIP2 coding sequences between four bruchid-resistant (V2802, V1128, V2817 and TC1966) and four bruchid-susceptible (KPS1, Sulu-1, CM and an unknown accession) mungbean lines revealed six single nucleotide polymorphisms (SNPs) between the resistant and susceptible groups. Three of the six SNPs resulted in amino acid changes; namely, alanine (A) to serine (S) at position 320, leucine (L) to proline (P) at position 332, and threonine (T) to P at position 335 of the VrPGIP2 sequence in resistant lines, compared with that in susceptible lines. The A to S change at position 320 may affect the interaction between PGIP and polygalacuronase. These results indicate that VrPGIP2 is very likely the gene at the Br locus responsible for bruchid resistance in mungbean.


Subject(s)
Plant Proteins/genetics , Vigna/genetics , Weevils , Amino Acid Sequence , Animals , Chromosome Mapping , DNA, Plant/genetics , Expressed Sequence Tags , Microsatellite Repeats , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Seeds
12.
Breed Sci ; 66(5): 838-844, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28163600

ABSTRACT

Genetic variation in Jatropha curcas, a prospective biodiesel plant, is limited, and interspecific hybridization needed for its genetic improvement. Progeny from interspecific crosses between J. curcas and Jatropha integerrima can be used to improve agronomic characters and to increase oil content and yield. However, these hybrids have not been characterized cytologically. The present study was aimed at the analysis of chromosome behavior during meiosis and chromosome composition of S1 plants derived from an interspecific F1 hybrid using genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH). Bivalents that formed as a result of interspecific pairing were frequently observed, suggesting the presence of homoeologous chromosomes from the two species. Almost half of microspores were derived from the reduction division; GISH analysis indicated random transmission of the parent chromosomes to microspores. Male fertility measured as pollen staining with acetocarmine was 48.4%. In contrast, GISH analysis of S1 plants revealed preferential transmission of J. curcas chromosomes. We also found segment exchange between chromosomes of the two species (interspecific translocation) by GISH and FISH analyses. Introgression of J. integerrima chromosome segments into the J. curcas genome would help to improve Jatropha cultivars for mass production.

13.
Breed Sci ; 65(2): 127-37, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26069442

ABSTRACT

In this study, 520 cultivated and 14 wild accessions of black gram (Vigna mungo (L.) Hepper) were assessed for diversity using 22 SSR markers. Totally, 199 alleles were detected with a mean of 9.05 alleles per locus. Wild black gram showed higher gene diversity than cultivated black gram. Gene diversity of cultivated accessions among regions was comparable, while allelic richness of South Asia was higher than that of other regions. 78.67% of the wild gene diversity presented in cultivated accessions, indicating that the domestication bottleneck effect in black gram is relatively low. Genetic distance analysis revealed that cultivated black gram was more closely related to wild black gram from South Asia than that from Southeast Asia. STRUCTURE, principal coordinate and neighbor-joining analyses consistently revealed that 534 black gram accessions were grouped into three major subpopulations. The analyses also revealed that cultivated black gram from South Asia was genetically distinct from that from West Asia. Comparison by SSR analysis with other closely related Vigna species, including mungbean, azuki bean, and rice bean, revealed that level of gene diversity of black gram is comparable to that of mungbean and rice bean but lower than that of azuki bean.

14.
Theor Appl Genet ; 128(9): 1881-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26081947

ABSTRACT

Sequence analysis revealed that an SNP (A1855G) in CsBADH of cucumber accession PK2011T202 causes amino acid change in a highly conserved motif, Y163C. Gene mapping showed association between the SNP and the fragrance. Pandan-like fragrance is a value-added trait in several food crops such as rice, vegetable soybean and sorghum. The fragrance is caused by the volatile chemical 2-acetyl-1-pyrroline (2AP). Mutation(s) in betaine aldehyde dehydrogenase 2 (BADH2; also known as aminoaldehyde dehydrogenase 2) gene causes defective BADH2 and results in biosynthesis of 2AP. Recently, cucumber cultivars possessing pandan-like fragrance were discovered in Thailand. In this study, we report an association between CsBADH and the fragrance in cucumber accession "PK2011T202". Gene expression analysis of CsBADH in leaves of PK2011T202 and "301176" (non-fragrant) at various growth stages revealed that CsBADH was expressed in both accessions. Sequence comparison of CsBADH showed that PK2011T202 possesses a single base substitution (A1855G) in exon 5 which causes an amino acid change in a highly conserved motif of BADH, Y163C. Single nucleotide-amplified polymorphism markers were developed to detect the SNP polymorphism between the wild-type and fragrance alleles. Since CsBADH is located on chromosome 1, quantitative trait locus (QTL) mapping was conducted for this chromosome using an F2 and a backcross populations developed from the cross between PK2011T202 and 301176. QTL analysis in both populations showed that the major QTL for fragrance, qFgr, was co-localized with the CsBADH. We concluded that the defect function of CsBADH is responsible for fragrance in cucumber PK2011T202.


Subject(s)
Betaine-Aldehyde Dehydrogenase/genetics , Cucumis sativus/genetics , Odorants , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Amino Acid Sequence , Amino Acid Substitution , Chromosome Mapping , Cucumis sativus/enzymology , DNA, Plant/genetics , Genetic Linkage , Genetic Markers , Molecular Sequence Data , Phylogeny , Pyrroles/chemistry , Quantitative Trait Loci , Sequence Analysis, DNA
15.
Front Plant Sci ; 5: 658, 2014.
Article in English | MEDLINE | ID: mdl-25520726

ABSTRACT

Jatropha (Jatropha curcas) is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq). The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future.

16.
Nat Commun ; 5: 5443, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25384727

ABSTRACT

Mungbean (Vigna radiata) is a fast-growing, warm-season legume crop that is primarily cultivated in developing countries of Asia. Here we construct a draft genome sequence of mungbean to facilitate genome research into the subgenus Ceratotropis, which includes several important dietary legumes in Asia, and to enable a better understanding of the evolution of leguminous species. Based on the de novo assembly of additional wild mungbean species, the divergence of what was eventually domesticated and the sampled wild mungbean species appears to have predated domestication. Moreover, the de novo assembly of a tetraploid Vigna species (V. reflexo-pilosa var. glabra) provides genomic evidence of a recent allopolyploid event. The species tree is constructed using de novo RNA-seq assemblies of 22 accessions of 18 Vigna species and protein sets of Glycine max. The present assembly of V. radiata var. radiata will facilitate genome research and accelerate molecular breeding of the subgenus Ceratotropis.


Subject(s)
DNA, Plant/genetics , Evolution, Molecular , Fabaceae/genetics , Genome, Plant/genetics , Gene Expression Profiling , Molecular Sequence Data , Phylogeny , Republic of Korea , Sequence Analysis
17.
Plant Pathol J ; 30(3): 261-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25289012

ABSTRACT

This work was conducted to identify mungbean genotypes showing yield stability and resistance to mungbean yellow mosaic virus (MYMV) disease. Sixteen genotypes were evaluated in a randomized complete block design with two replications for two years (2011 and 2012) at three locations (Gazipur, Ishurdi and Madaripur) of the Bangladesh Agricultural Research Institute. An analysis of variance exhibited significant effects of genotype (G), environment (E), and genotype × environment (G×E) on grain yield. Among eight agronomic characters, the principal component 1 (PC1) was always higher than the PC2. Considering G×E interaction, BM6 was the best genotype at all three locations in both years. Based on grain yield and stability performance, BM6 ranked first while the worst performing genotypes were BM1 and G10. Based on discrimination and representation, Gazipur was identified as an ideal environment for these mungbeans. Relationship between soil-plant analysis developments (SPAD) value was positive with yield but negative with MYMV severity. BM6, G1 and G2 were considered as promising sources of resistance for low disease score and stable response across the environments. The environment proved to have an influence on MYMV infection under natural infestation. A positive correlation was observed between disease score and the temperature under natural growing condition.

18.
J Genet ; 93(2): 365-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25189231

ABSTRACT

Seed storability is especially important in the tropics due to high temperature and relative humidity of storage environment that cause rapid deterioration of seeds in storage. The objective of this study was to use SSR markers to identify genomic regions associated with quantitative trait loci (QTLs) controlling seed storability based on relative germination rate in the F2:3 population derived from a cross between vegetable soybean line (MJ0004-6) with poor longevity and landrace cultivar from Myanmar (R18500) with good longevity. The F2:4 seeds harvested in 2011 and 2012 were used to investigate seed storability. The F2 population was genotyped with 148 markers and the genetic map consisted of 128 SSR loci which converged into 38 linkage groups covering 1664.3 cM of soybean genome. Single marker analysis revealed that 13 markers from six linkage groups (C1, D2, E, F, J and L) were associated with seed storability. Composite interval mapping identified a total of three QTLs on linkage groups C1, F and L with phenotypic variance explained ranging from 8.79 to 13.43%. The R18500 alleles increased seed storability at all of the detected QTLs. No common QTLs were found for storability of seeds harvested in 2011 and 2012. This study agreed with previous reports in other crops that genotype by environment interaction plays an important role in expression of seed storability.


Subject(s)
Glycine max/genetics , Seeds/genetics , Chromosome Mapping , Gene-Environment Interaction , Genetic Association Studies , Genetic Linkage , Genetic Markers , Genome, Plant , Germination , Humidity , Microsatellite Repeats , Phenotype , Quantitative Trait Loci , Seeds/growth & development , Sequence Analysis, DNA , Glycine max/growth & development
19.
J Hered ; 105(5): 656-65, 2014.
Article in English | MEDLINE | ID: mdl-25080466

ABSTRACT

Inositol hexaphosphate (Ins P6 or "phytic acid") typically accounts for 75 (± 10%) of seed total phosphorus (P). In some cases, genetic blocks in seed Ins P6 accumulation can also alter the distribution or total amount of seed P. In nonmutant barley (Hordeum vulgare L.) caryopses, ~80% of Ins P6 and total P accumulate in the aleurone layer, the outer layer of the endosperm, with the remainder in the germ. In barley low phytic acid 1-1 (Hvlpa1-1) seed, both endosperm Ins P6 and total P are reduced (~45% and ~25%, respectively), but germs are phenotypically wild type. This translates into a net reduction in whole-seed total P of ~15%. Nutrient culture studies demonstrate that the reduction in endosperm total P is not due to a reduction in the uptake of P into the maternal plant. Genetic tests (analyses of testcross and F2 seed) reveal that the Hvlpa1-1 genotype of the filial seed conditions the seed total P reduction; sibling seed in the same head of barley that differ in their Hvlpa1-1 genotype (heterozygous vs. homozygous recessive) differ in their total P (normal vs. reduced, respectively). Therefore, Hvlpa1 functions as a seed-specific or filial determinant of barley endosperm total P.


Subject(s)
Endosperm/chemistry , Hordeum/genetics , Phosphorus/chemistry , Phytic Acid/chemistry , Genotype , Hordeum/chemistry
20.
PLoS One ; 9(8): e104990, 2014.
Article in English | MEDLINE | ID: mdl-25153330

ABSTRACT

Vigna reflexo-pilosa, which includes a neglected crop, is the only one tetraploid species in genus Vigna. The ancestral species that make up this allotetraploid species have not conclusively been identified, although previous studies suggested that a donor genome of V. reflexo-pilosa is V. trinervia. In this study, 1,429 azuki bean EST-SSR markers were developed of which 38 EST-SSR primer pairs that amplified one product in diploid species and two discrete products in tetraploid species were selected to analyze 268 accessions from eight taxa of seven Asian Vigna species including V. reflexo-pilosa var. glabra, V. reflexo-pilosa var. reflexo-pilosa, V. exilis, V. hirtella, V. minima, V. radiata var. sublobata, V. tenuicaulis and V. trinervia to identify genome donor of V. reflexo-pilosa. Since both diploid and tetraploid species were analyzed and each SSR primer pair detected two loci in the tetraploid species, we separated genomes of the tetraploid species into two different diploid types, viz. A and B. In total, 445 alleles were detected by 38 EST-SSR markers. The highest gene diversity was observed in V. hirtella. By assigning the discrete PCR products of V. reflexo-pilosa into two distinguished genomes, we were able to identify the two genome donor parents of créole bean. Phylogenetic and principal coordinate analyses suggested that V. hirtella is a species complex and may be composed of at least three distinct taxa. Both analyses also clearly demonstrated that V. trinervia and one taxon of V. hirtella are the genome donors of V. reflexo-pilosa. Gene diversity indicates that the evolution rate of EST-SSRs on genome B of créole bean might be faster than that on genome A. Species relationship among the Vigna species in relation to genetic data, morphology and geographical distribution are presented.


Subject(s)
Fabaceae/genetics , Genome, Plant , Diploidy , Expressed Sequence Tags/metabolism , Genetic Markers , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL