Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 14(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38392985

ABSTRACT

The interconnectivity of advanced biological systems is essential for their proper functioning. In modern connectomics, biological entities such as proteins, genes, RNA, DNA, and metabolites are often represented as nodes, while the physical, biochemical, or functional interactions between them are represented as edges. Among these entities, metabolites are particularly significant as they exhibit a closer relationship to an organism's phenotype compared to genes or proteins. Moreover, the metabolome has the ability to amplify small proteomic and transcriptomic changes, even those from minor genomic changes. Metabolic networks, which consist of complex systems comprising hundreds of metabolites and their interactions, play a critical role in biological research by mediating energy conversion and chemical reactions within cells. This review provides an introduction to common metabolic network models and their construction methods. It also explores the diverse applications of metabolic networks in elucidating disease mechanisms, predicting and diagnosing diseases, and facilitating drug development. Additionally, it discusses potential future directions for research in metabolic networks. Ultimately, this review serves as a valuable reference for researchers interested in metabolic network modeling, analysis, and their applications.

2.
Cells ; 12(8)2023 04 13.
Article in English | MEDLINE | ID: mdl-37190063

ABSTRACT

Epithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal pigment epithelium (RPE), although important in the pathogenesis of these retinal conditions, is not well understood at the molecular level. We and others have shown that a variety of molecules, including the co-treatment of human stem cell-derived RPE monolayer cultures with transforming growth factor beta (TGF-ß) and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), can induce RPE-EMT; however, small molecule inhibitors of RPE-EMT have been less well studied. Here, we demonstrate that BAY651942, a small molecule inhibitor of nuclear factor kapa-B kinase subunit beta (IKKß) that selectively targets NF-κB signaling, can modulate TGF-ß/TNF-α-induced RPE-EMT. Next, we performed RNA-seq studies on BAY651942 treated hRPE monolayers to dissect altered biological pathways and signaling events. Further, we validated the effect of IKKß inhibition on RPE-EMT-associated factors using a second IKKß inhibitor, BMS345541, with RPE monolayers derived from an independent stem cell line. Our data highlights the fact that pharmacological inhibition of RPE-EMT restores RPE identity and may provide a promising approach for treating retinal diseases that involve RPE dedifferentiation and EMT.


Subject(s)
Retinal Pigment Epithelium , Vitreoretinopathy, Proliferative , Humans , Retinal Pigment Epithelium/metabolism , Epithelial-Mesenchymal Transition , I-kappa B Kinase/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Vitreoretinopathy, Proliferative/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/metabolism , Protein Serine-Threonine Kinases/metabolism , Stem Cells/metabolism
3.
Cell Rep ; 37(3): 109866, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686321

ABSTRACT

Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is associated with several blinding retinal diseases. Using proteomics and phosphoproteomics studies of human induced pluripotent stem cell-derived RPE monolayers with induced EMT, we capture kinase/phosphatase signaling cascades 1 h and 12 h after induction to better understand the pathways mediating RPE EMT. Induction by co-treatment with transforming growth factor ß and tumor necrosis factor alpha (TGNF) or enzymatic dissociation perturbs signaling in many of the same pathways, with striking similarity in the respective phosphoproteomes at 1 h. Liver hyperplasia and hepatocyte growth factor (HGF)-MET signaling exhibit the highest overall enrichment. We also observe that HGF and epidermal growth factor signaling, two cooperative pathways inhibited by EMT induction, regulate the RPE transcriptional profile.


Subject(s)
Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Induced Pluripotent Stem Cells/metabolism , Liver/metabolism , Proteome , Proteomics , Retinal Pigment Epithelium/metabolism , Cell Line , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Hyperplasia , Induced Pluripotent Stem Cells/drug effects , Liver/pathology , Phosphorylation , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Retinal Pigment Epithelium/drug effects , Signal Transduction , Transcriptome , Transforming Growth Factor beta/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
4.
Mol Cell Proteomics ; 20: 100131, 2021.
Article in English | MEDLINE | ID: mdl-34455105

ABSTRACT

Stress and injury to the retinal pigment epithelium (RPE) often lead to dedifferentiation and epithelial-to-mesenchymal transition (EMT). These processes have been implicated in several retinal diseases, including proliferative vitreoretinopathy, diabetic retinopathy, and age-related macular degeneration. Despite the importance of RPE-EMT and the large body of data characterizing malignancy-related EMT, comprehensive proteomic studies to define the protein changes and pathways underlying RPE-EMT have not been reported. This study sought to investigate the temporal protein expression changes that occur in a human-induced pluripotent stem cell-based RPE-EMT model. We utilized multiplexed isobaric tandem mass tag labeling followed by high-resolution tandem MS for precise and in-depth quantification of the RPE-EMT proteome. We have identified and quantified 7937 protein groups in our tandem mass tag-based MS analysis. We observed a total of 532 proteins that are differentially regulated during RPE-EMT. Furthermore, we integrated our proteomic data with prior transcriptomic (RNA-Seq) data to provide additional insights into RPE-EMT mechanisms. To validate these results, we have performed a label-free single-shot data-independent acquisition MS study. Our integrated analysis indicates both the commonality and uniqueness of RPE-EMT compared with malignancy-associated EMT. Our comparative analysis also revealed that multiple age-related macular degeneration-associated risk factors are differentially regulated during RPE-EMT. Together, our integrated dataset provides a comprehensive RPE-EMT atlas and resource for understanding the molecular signaling events and associated biological pathways that underlie RPE-EMT onset. This resource has already facilitated the identification of chemical modulators that could inhibit RPE-EMT, and it will hopefully aid in ongoing efforts to develop EMT inhibition as an approach for the treatment of retinal disease.


Subject(s)
Epithelial-Mesenchymal Transition , Retinal Pigment Epithelium/metabolism , Carcinogenesis , Cells, Cultured , Coculture Techniques , Embryonic Stem Cells , Humans , Induced Pluripotent Stem Cells , Proteome
5.
Invest Ophthalmol Vis Sci ; 62(4): 1, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33792620

ABSTRACT

Purpose: RPE injury often induces epithelial to mesenchymal transition (EMT). Although RPE-EMT has been implicated in a variety of retinal diseases, including proliferative vitroretinopathy, neovascular and atrophic AMD, and diabetic retinopathy, it is not well-understood at the molecular level. To contribute to our understanding of EMT in human RPE, we performed a time-course transcriptomic analysis of human stem cell-derived RPE (hRPE) monolayers induced to undergo EMT using 2 independent, yet complementary, model systems. Methods: EMT of human stem cell-derived RPE monolayers was induced by either enzymatic dissociation or modulation of TGF-ß signaling. Transcriptomic analysis of cells at different stages of EMT was performed by RNA-sequencing, and select findings were confirmed by reverse transcription quantitative PCR and immunostaining. An ingenuity pathway analysis (IPA) was performed to identify signaling pathways and regulatory networks associated with EMT. Results: Proteocollagenolytic enzymatic dissociation and cotreatment with TGF-ß and TNF-α both induce EMT in human stem cell-derived RPE monolayers, leading to an increased expression of mesenchymal factors and a decreased expression of RPE differentiation-associated factors. Ingenuity pathway analysis identified the upstream regulators of the RPE-EMT regulatory networks and identified master switches and nodes during RPE-EMT. Of particular interest was the identification of widespread dysregulation of axon guidance molecules during RPE-EMT progression. Conclusions: The temporal transcriptome profiles described here provide a comprehensive resource of the dynamic signaling events and the associated biological pathways that underlie RPE-EMT onset. The pathways defined by these studies may help to identify targets for the development of novel therapeutic targets for the treatment of retinal disease.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Pluripotent Stem Cells/cytology , Retinal Pigment Epithelium/metabolism , Transcriptome/physiology , Cell Differentiation , Cells, Cultured , Flow Cytometry , Gene Expression Profiling , Humans , Retinal Pigment Epithelium/cytology , Signal Transduction , Transcription Factors
6.
Nat Commun ; 9(1): 1364, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636475

ABSTRACT

Age-related macular degeneration (AMD) is a significant cause of vision loss in the elderly. The extent to which epigenetic changes regulate AMD progression is unclear. Here we globally profile chromatin accessibility using ATAC-Seq in the retina and retinal pigmented epithelium (RPE) from AMD and control patients. Global decreases in chromatin accessibility occur in the RPE with early AMD, and in the retina of advanced disease, suggesting that dysfunction in the RPE drives disease onset. Footprints of photoreceptor and RPE-specific transcription factors are enriched in differentially accessible regions (DARs). Genes associated with DARs show altered expression in AMD. Cigarette smoke treatment of RPE cells recapitulates chromatin accessibility changes seen in AMD, providing an epigenetic link between a known risk factor for AMD and AMD pathology. Finally, overexpression of HDAC11 is partially responsible for the observed reduction in chromatin accessibility, suggesting that HDAC11 may be a potential new therapeutic target for AMD.


Subject(s)
Chromatin/chemistry , Epigenesis, Genetic , Eye Proteins/genetics , Histone Deacetylases/genetics , Macular Degeneration/genetics , Transcription Factors/genetics , Aged , Aged, 80 and over , Case-Control Studies , Chromatin/metabolism , Complex Mixtures/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Eye Proteins/metabolism , Female , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing/methods , Histone Deacetylases/metabolism , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Primary Cell Culture , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Smoke/analysis , Nicotiana/chemistry , Transcription Factors/metabolism
7.
Sci Rep ; 7(1): 766, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28396597

ABSTRACT

The retinal degenerative diseases, which together constitute a leading cause of hereditary blindness worldwide, are largely untreatable. Development of reliable methods to culture complex retinal tissues from human pluripotent stem cells (hPSCs) could offer a means to study human retinal development, provide a platform to investigate the mechanisms of retinal degeneration and screen for neuroprotective compounds, and provide the basis for cell-based therapeutic strategies. In this study, we describe an in vitro method by which hPSCs can be differentiated into 3D retinas with at least some important features reminiscent of a mature retina, including exuberant outgrowth of outer segment-like structures and synaptic ribbons, photoreceptor neurotransmitter expression, and membrane conductances and synaptic vesicle release properties consistent with possible photoreceptor synaptic function. The advanced outer segment-like structures reported here support the notion that 3D retina cups could serve as a model for studying mature photoreceptor development and allow for more robust modeling of retinal degenerative disease in vitro.


Subject(s)
Cell Differentiation , Pluripotent Stem Cells/cytology , Retina/cytology , Retina/metabolism , Retinal Photoreceptor Cell Outer Segment/metabolism , Biomarkers , Cell Culture Techniques , Cells, Cultured , Cytoplasmic Vesicles/metabolism , Cytoplasmic Vesicles/ultrastructure , Gene Expression , Humans , Hypoxia , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...