Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Trends Biochem Sci ; 48(6): 553-567, 2023 06.
Article in English | MEDLINE | ID: mdl-36863894

ABSTRACT

Isotope-assisted metabolic flux analysis (iMFA) is a powerful method to mathematically determine the metabolic fluxome from experimental isotope labeling data and a metabolic network model. While iMFA was originally developed for industrial biotechnological applications, it is increasingly used to analyze eukaryotic cell metabolism in physiological and pathological states. In this review, we explain how iMFA estimates the intracellular fluxome, including data and network model (inputs), the optimization-based data fitting (process), and the flux map (output). We then describe how iMFA enables analysis of metabolic complexities and discovery of metabolic pathways. Our goal is to expand the use of iMFA in metabolism research, which is essential to maximizing the impact of metabolic experiments and continuing to advance iMFA and biocomputational techniques.


Subject(s)
Metabolic Flux Analysis , Metabolic Networks and Pathways , Metabolic Flux Analysis/methods , Isotopes , Isotope Labeling/methods , Models, Biological
2.
Metabolites ; 12(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36355149

ABSTRACT

Cell metabolism represents the coordinated changes in genes, proteins, and metabolites that occur in health and disease. The metabolic fluxome, which includes both intracellular and extracellular metabolic reaction rates (fluxes), therefore provides a powerful, integrated description of cellular phenotype. However, intracellular fluxes cannot be directly measured. Instead, flux quantification requires sophisticated mathematical and computational analysis of data from isotope labeling experiments. In this review, we describe isotope-assisted metabolic flux analysis (iMFA), a rigorous computational approach to fluxome quantification that integrates metabolic network models and experimental data to generate quantitative metabolic flux maps. We highlight practical considerations for implementing iMFA in mammalian models, as well as iMFA applications in in vitro and in vivo studies of physiology and disease. Finally, we identify promising new frontiers in iMFA which may enable us to fully unlock the potential of iMFA in biomedical research.

3.
PLoS Comput Biol ; 18(3): e1009831, 2022 03.
Article in English | MEDLINE | ID: mdl-35324890

ABSTRACT

Stable isotope-assisted metabolic flux analysis (MFA) is a powerful method to estimate carbon flow and partitioning in metabolic networks. At its core, MFA is a parameter estimation problem wherein the fluxes and metabolite pool sizes are model parameters that are estimated, via optimization, to account for measurements of steady-state or isotopically-nonstationary isotope labeling patterns. As MFA problems advance in scale, they require efficient computational methods for fast and robust convergence. The structure of the MFA problem enables it to be cast as an equality-constrained nonlinear program (NLP), where the equality constraints are constructed from the MFA model equations, and the objective function is defined as the sum of squared residuals (SSR) between the model predictions and a set of labeling measurements. This NLP can be solved by using an algebraic modeling language (AML) that offers state-of-the-art optimization solvers for robust parameter estimation and superior scalability to large networks. When implemented in this manner, the optimization is performed with no distinction between state variables and model parameters. During each iteration of such an optimization, the system state is updated instead of being calculated explicitly from scratch, and this occurs concurrently with improvement in the model parameter estimates. This optimization approach starkly contrasts with traditional "shooting" methods where the state variables and model parameters are kept distinct and the system state is computed afresh during each iteration of a stepwise optimization. Our NLP formulation uses the MFA modeling framework of Wiechert et al. [1], which is amenable to incorporation of the model equations into an NLP. The NLP constraints consist of balances on either elementary metabolite units (EMUs) or cumomers. In this formulation, both the steady-state and isotopically-nonstationary MFA (inst-MFA) problems may be solved as an NLP. For the inst-MFA case, the ordinary differential equation (ODE) system describing the labeling dynamics is transcribed into a system of algebraic constraints for the NLP using collocation. This large-scale NLP may be solved efficiently using an NLP solver implemented on an AML. In our implementation, we used the reduced gradient solver CONOPT, implemented in the General Algebraic Modeling System (GAMS). The NLP framework is particularly advantageous for inst-MFA, scaling well to large networks with many free parameters, and having more robust convergence properties compared to the shooting methods that compute the system state and sensitivities at each iteration. Additionally, this NLP approach supports the use of tandem-MS data for both steady-state and inst-MFA when the cumomer framework is used. We assembled a software, eiFlux, written in Python and GAMS that uses the NLP approach and supports both steady-state and inst-MFA. We demonstrate the effectiveness of the NLP formulation on several examples, including a genome-scale inst-MFA model, to highlight the scalability and robustness of this approach. In addition to typical inst-MFA applications, we expect that this framework and our associated software, eiFlux, will be particularly useful for applying inst-MFA to complex MFA models, such as those developed for eukaryotes (e.g. algae) and co-cultures with multiple cell types.


Subject(s)
Leukemia, Myeloid, Acute , Metabolic Flux Analysis , Carbon Isotopes/metabolism , Humans , Isotope Labeling/methods , Metabolic Flux Analysis/methods , Metabolic Networks and Pathways , Models, Biological
4.
Metabolites ; 11(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917224

ABSTRACT

Disrupted endothelial metabolism is linked to endothelial dysfunction and cardiovascular disease. Targeted metabolic inhibitors are potential therapeutics; however, their systemic impact on endothelial metabolism remains unknown. In this study, we combined stable isotope labeling with 13C metabolic flux analysis (13C MFA) to determine how targeted inhibition of the polyol (fidarestat), pentose phosphate (DHEA), and hexosamine biosynthetic (azaserine) pathways alters endothelial metabolism. Glucose, glutamine, and a four-carbon input to the malate shuttle were important carbon sources in the baseline human umbilical vein endothelial cell (HUVEC) 13C MFA model. We observed two to three times higher glutamine uptake in fidarestat and azaserine-treated cells. Fidarestat and DHEA-treated HUVEC showed decreased 13C enrichment of glycolytic and TCA metabolites and amino acids. Azaserine-treated HUVEC primarily showed 13C enrichment differences in UDP-GlcNAc. 13C MFA estimated decreased pentose phosphate pathway flux and increased TCA activity with reversed malate shuttle direction in fidarestat and DHEA-treated HUVEC. In contrast, 13C MFA estimated increases in both pentose phosphate pathway and TCA activity in azaserine-treated cells. These data show the potential importance of endothelial malate shuttle activity and suggest that inhibiting glycolytic side branch pathways can change the metabolic network, highlighting the need to study systemic metabolic therapeutic effects.

5.
Plant Physiol ; 186(2): 1159-1170, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33620482

ABSTRACT

Diatoms are photosynthetic microalgae that fix a significant fraction of the world's carbon. Because of their photosynthetic efficiency and high-lipid content, diatoms are priority candidates for biofuel production. Here, we report that sporulating Bacillus thuringiensis and other members of the Bacillus cereus group, when in co-culture with the marine diatom Phaeodactylum tricornutum, significantly increase diatom cell count. Bioassay-guided purification of the mother cell lysate of B. thuringiensis led to the identification of two diketopiperazines (DKPs) that stimulate both P. tricornutum growth and increase its lipid content. These findings may be exploited to enhance P. tricornutum growth and microalgae-based biofuel production. As increasing numbers of DKPs are isolated from marine microbes, the work gives potential clues to bacterial-produced growth factors for marine microalgae.


Subject(s)
Carbon/metabolism , Diatoms/drug effects , Diketopiperazines/pharmacology , Biofuels , Diatoms/growth & development , Diatoms/metabolism , Lipid Metabolism/drug effects , Microalgae , Photosynthesis/drug effects
6.
Metab Eng Commun ; 12: e00154, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33489751

ABSTRACT

Genome-scale stoichiometric models (GSMs) have been widely utilized to predict and understand cellular metabolism. GSMs and the flux predictions resulting from them have proven indispensable to fields ranging from metabolic engineering to human disease. Nonetheless, it is challenging to parse these flux predictions due to the inherent size and complexity of the GSMs. Several previous approaches have reduced this complexity by identifying key pathways contained within the genome-scale flux predictions. However, a reduction method that overlays carbon atom transitions on stoichiometry and flux predictions is lacking. To fill this gap, we developed NetFlow, an algorithm that leverages genome-scale carbon mapping to extract and quantitatively distinguish biologically relevant metabolic pathways from a given genome-scale flux prediction. NetFlow extends prior approaches by utilizing both full carbon mapping and context-specific flux predictions. Thus, NetFlow is uniquely able to quantitatively distinguish between biologically relevant pathways of carbon flow within the given flux map. NetFlow simulates 13C isotope labeling experiments to calculate the extent of carbon exchange, or carbon yield, between every metabolite in the given GSM. Based on the carbon yield, the carbon flow to or from any metabolite or between any pair of metabolites of interest can be isolated and readily visualized. The resulting pathways are much easier to interpret, which enables an in-depth mechanistic understanding of the metabolic phenotype of interest. Here, we first demonstrate NetFlow with a simple network. We then depict the utility of NetFlow on a model of central carbon metabolism in E. coli. Specifically, we isolated the production pathway for succinate synthesis in this model and the metabolic mechanism driving the predicted increase in succinate yield in a double knockout of E. coli. Finally, we describe the application of NetFlow to a GSM of lycopene-producing E. coli, which enabled the rapid identification of the mechanisms behind the measured increases in lycopene production following single, double, and triple knockouts.

7.
Metab Eng ; 65: 207-222, 2021 05.
Article in English | MEDLINE | ID: mdl-33161143

ABSTRACT

Flux balance analysis (FBA) of large, genome-scale stoichiometric models (GSMs) is a powerful and popular method to predict cell-wide metabolic activity. FBA typically generates a flux vector containing O(1,000) fluxes. The interpretation of such a flux vector is difficult, even for expert users, because of the large size and complex topology of the underlying metabolic network. This interpretation could be simplified by condensing the network to a reduced, yet fully representative version. Toward this goal we report NetRed, an algorithm that systematically reduces a stoichiometric matrix and a corresponding flux vector to a more easily interpretable form. The reduction offered by NetRed is transparent because it relies purely on matrix algebra and not on optimization. Uniquely, it involves zero information loss; therefore, the original unreduced network can be easily recovered from the reduced network. The inputs to NetRed are (i) a stoichiometric matrix, (ii) a flux vector with numerical flux values, and (iii) a list of "protected" metabolites recommended by the user to remain in the reduced network. NetRed outputs a reduced metabolic network containing a reduced number of metabolites, of which the protected metabolites are a subset. The algorithm also generates a corresponding reduced flux vector. Due to its simplified presentation and easier interpretability, the reduced network allows the user to quickly find fluxes through metabolites and reaction modes or pathways of interest. In this manuscript, we first demonstrate NetRed on a simple network consisting of glycolysis and the pentose phosphate pathway (PPP), wherein NetRed reduced the PPP to a single net reaction. We followed this with applications of NetRed to E. coli and yeast GSMs. NetRed reduced the size of an E. coli GSM by 20- to 30-fold and enabled a comprehensive comparison of aerobic and anaerobic metabolism. The application of NetRed to a yeast GSM allowed for easy mechanistic interpretation of a double-gene knockout that rerouted flux toward dihydroartemisinic acid. When applied to an E. coli strain engineered for enhanced valine production, NetRed allowed for a holistic interpretation of the metabolic rerouting resulting from multiple genetic interventions.


Subject(s)
Escherichia coli , Models, Biological , Algorithms , Escherichia coli/genetics , Genome , Metabolic Flux Analysis , Metabolic Networks and Pathways/genetics
8.
Biotechnol Lett ; 42(11): 2083-2089, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32494995

ABSTRACT

The bovine cell line, cow trophectoderm-1 (CT-1), provides an excellent in-vitro cell culture model to study early embryonic development. Obtaining consistent attachment and outgrowth, however, is difficult because enzymatic disassociation into single cells is detrimental; therefore, CT-1 cells must be passaged in clumps, which do not attach readily to the surface of the dish. We tested whether magnetic nanoparticles, NanoShuttle™-PL, could be used to improve cell attachment and subsequent proliferation of the cattle trophectoderm cell line without altering cellular metabolism or immunofluorescent detection of the lineage marker Caudal Type Homeobox 2 (CDX2). Confluency was achieved more consistently by using the NanoShuttle™-PL system to magnetically force attachment (75-100% of wells) as compared to the control (11%). Moreover, there were no alterations in characteristic morphology, nuclear-localized expression of the trophectoderm marker CDX2, or glycolytic metabolism. By enhancing attachment, magnetic nanoparticles improved culture efficiency and reproducibility in an anchorage-dependent cell line that otherwise was recalcitrant to efficient passaging.


Subject(s)
CDX2 Transcription Factor/metabolism , Cell Culture Techniques/methods , Ectoderm/cytology , Trophoblasts/cytology , Animals , Cattle , Cell Adhesion , Cell Line , Cell Proliferation , Ectoderm/metabolism , Female , Glycolysis , Magnetite Nanoparticles , Pregnancy , Trophoblasts/metabolism
9.
Mol Genet Metab ; 124(4): 254-265, 2018 08.
Article in English | MEDLINE | ID: mdl-29960856

ABSTRACT

Glycerol kinase (GK) is a multifunctional enzyme located at the interface of carbohydrate and fat metabolism. It contributes to both central carbon metabolism and adipogenesis; specifically, through its role as the ATP-stimulated translocation promoter (ASTP). GK overexpression leads to increased ASTP activity and increased fat storage in H4IIE cells. We performed metabolic flux analysis in human GK-overexpressing H4IIE cells and found that overexpressing cells had significantly altered fluxes through central carbon and lipid metabolism including increased flux through the pentose phosphate pathway and increased production of lipids. We also observed an equal contribution of glycerol to carbohydrate metabolism in all cell lines, suggesting that GK's alternate functions rather than its enzymatic function are important for these processes. To further elucidate the contributions of the enzymatic (phosphorylation) and alternative (ASTP) functions of GK in adipogenesis, we performed experiments on mammalian GK and E. coli GK. We determined that the ASTP function of GK (which is absent in E. coli GK) plays a greater role than the enzymatic activity in these processes. These studies further emphasize GK's diverse functionality and provides fundamental insights into the multiple protein functions of glycerol kinase.


Subject(s)
Adipogenesis/genetics , Carrier Proteins/genetics , Glycerol Kinase/genetics , Lipid Metabolism/genetics , Animals , Carbohydrate Metabolism/genetics , Carrier Proteins/chemistry , Escherichia coli/enzymology , Gene Expression Regulation, Enzymologic , Glycerol/metabolism , Glycerol Kinase/chemistry , Humans , Promoter Regions, Genetic , Rats
10.
Plant J ; 93(3): 472-488, 2018 02.
Article in English | MEDLINE | ID: mdl-29193384

ABSTRACT

Reduced nitrogen is indispensable to plants. However, its limited availability in soil combined with the energetic and environmental impacts of nitrogen fertilizers motivates research into molecular mechanisms toward improving plant nitrogen use efficiency (NUE). We performed a systems-level investigation of this problem by employing multiple 'omics methodologies on cell suspensions of hybrid poplar (Populus tremula × Populus alba). Acclimation and growth of the cell suspensions in four nutrient regimes ranging from abundant to deficient supplies of carbon and nitrogen revealed that cell growth under low-nitrogen levels was associated with substantially higher NUE. To investigate the underlying metabolic and molecular mechanisms, we concurrently performed steady-state 13 C metabolic flux analysis with multiple isotope labels and transcriptomic profiling with cDNA microarrays. The 13 C flux analysis revealed that the absolute flux through the oxidative pentose phosphate pathway (oxPPP) was substantially lower (~threefold) under low-nitrogen conditions. Additionally, the flux partitioning ratio between the tricarboxylic acid cycle and anaplerotic pathways varied from 84%:16% under abundant carbon and nitrogen to 55%:45% under deficient carbon and nitrogen. Gene expression data, together with the flux results, suggested a plastidic localization of the oxPPP as well as transcriptional regulation of certain metabolic branchpoints, including those between glycolysis and the oxPPP. The transcriptome data also indicated that NUE-improving mechanisms may involve a redirection of excess carbon to aromatic metabolic pathways and extensive downregulation of potentially redundant genes (in these heterotrophic cells) that encode photosynthetic and light-harvesting proteins, suggesting the recruitment of these proteins as nitrogen sinks in nitrogen-abundant conditions.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Populus/genetics , Populus/metabolism , Acetyl Coenzyme A/metabolism , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Citric Acid Cycle , Gene Expression Profiling , Gene Expression Regulation, Plant , Metabolic Flux Analysis/methods , Pentose Phosphate Pathway , Populus/cytology
11.
Mol Genet Metab ; 119(3): 288-292, 2016 11.
Article in English | MEDLINE | ID: mdl-27746033

ABSTRACT

Mathematical modeling approaches have been commonly used in complex signaling pathway studies such as the insulin signal transduction pathway. Our expanded mathematical model of the insulin signal transduction pathway was previously shown to effectively predict glucose clearance rates using mRNA levels of key components of the pathway in a mouse model. In this study, we re-optimized and applied our expanded model to study insulin sensitivity in other species and tissues (human skeletal muscle) with altered protein activities of insulin signal transduction pathway components. The model has now been optimized to predict the effect of short term exercise on insulin sensitivity for human test subjects with obesity or type II diabetes mellitus. A comparison between our extended model and the original model showed that our model better simulates the GLUT4 translocation events of the insulin signal transduction pathway and glucose uptake as a clinically relevant model output. Results from our extended model correlate with O'Gorman's published in-vivo results. This study demonstrates the ability to adapt this model to study insulin sensitivity to many biological systems (human skeletal muscle and mouse liver) with minimal changes in the model parameters.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Insulin Resistance/genetics , Models, Theoretical , Obesity/genetics , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Humans , Insulin/genetics , Mice , Obesity/complications , Obesity/pathology , Signal Transduction
12.
Mol Genet Metab ; 114(1): 66-72, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25468647

ABSTRACT

Mathematical models of biological pathways facilitate a systems biology approach to medicine. However, these models need to be updated to reflect the latest available knowledge of the underlying pathways. We developed a mathematical model of the insulin signal transduction pathway by expanding the last major previously reported model and incorporating pathway components elucidated since the original model was reported. Furthermore, we show that inputting gene expression data of key components of the insulin signal transduction pathway leads to sensible predictions of glucose clearance rates in agreement with reported clinical measurements. In one set of simulations, our model predicted that glycerol kinase knockout mice have reduced GLUT4 translocation, and consequently, reduced glucose uptake. Additionally, a comparison of our extended model with the original model showed that the added pathway components improve simulations of glucose clearance rates. We anticipate this expanded model to be a useful tool for predicting insulin sensitivity in mammalian tissues with altered expression protein phosphorylation or mRNA levels of insulin signal transduction pathway components.


Subject(s)
Glucose/metabolism , Insulin Resistance , Insulin/metabolism , Models, Biological , Signal Transduction , Animals , Gene Expression Profiling , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Glycerol Kinase/genetics , Insulin Resistance/genetics , Mice , Mice, Knockout , Phosphorylation
13.
J Proteome Res ; 14(2): 1112-26, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25513840

ABSTRACT

Seasonal nitrogen (N) cycling in temperate deciduous trees involves the accumulation of bark storage proteins (BSPs) in phloem parenchyma and xylem ray cells. BSPs are anabolized using recycled N during autumn leaf senescence and later become a source of N during spring shoot growth as they are catabolized. Little is known about the catabolic processes involved in remobilization and reutilization of N from BSPs in trees. In this study, we used multidimensional protein identification technology (MudPIT) and spectral counting to identify protein changes that occur in the bark during BSP catabolism. A total of 4,178 proteins were identified from bark prior to and during BSP catabolism. The majority (62%) of the proteins were found during BSP catabolism, indicating extensive remodeling of the proteome during renewed shoot growth and N remobilization. Among these proteins were 30 proteases, the relative abundances of which increased during BSP catabolism. These proteases spanned a range of families including members of the papain-like cysteine proteases, serine carboxypeptidases, and aspartyl proteases. These data identify, for the first time, candidate proteases that could potentially provide hydrolase activity required for N remobilization from BSPs and provide the foundation for research to advance our knowledge of poplar N cycling.


Subject(s)
Nitrogen/metabolism , Plant Bark/metabolism , Plant Proteins/metabolism , Populus/metabolism , Proteomics , Mass Spectrometry , Phylogeny
14.
Mol Biosyst ; 10(6): 1496-508, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24675729

ABSTRACT

Isotope-assisted metabolic flux analysis (MFA) is a powerful methodology to quantify intracellular fluxes via isotope labeling experiments (ILEs). In batch cultures, which are often convenient, inexpensive or inevitable especially for eukaryotic systems, MFA is complicated by the presence of the initially present biomass. This unlabeled biomass may either mix with the newly synthesized labeled biomass or reflux into the metabolic network, thus masking the true labeling patterns in the newly synthesized biomass. Here, we report a detailed investigation of such metabolite reflux in cell suspensions of the tree poplar. In ILEs supplying 28% or 98% U-(13)C glucose as the sole organic carbon source, biomass components exhibited lower (13)C enrichments than the supplied glucose as well as anomalous isotopomers not explainable by simple mixing of the initial and newly synthesized biomass. These anomalous labeling patterns were most prominent in a 98% U-(13)C glucose ILE. By comparing the performance of light- and dark-grown cells as well as by analyzing the isotope labeling patterns in aspartic and glutamic acids, we eliminated photosynthetic or anaplerotic fixation of extracellular (12)CO2 as explanations for the anomalous labeling patterns. We further investigated four different metabolic models for interpreting the labeling patterns and evaluating fluxes: (i) a carbon source (glucose) dilution model, (ii) an isotopomer correction model with uniform dilution for all amino acids, (iii) an isotopomer correction model with variable dilution for different amino acids, and (iv) a comprehensive metabolite reflux model. Of these, the metabolite reflux model provided a substantially better fit for the observed labeling patterns (sum of squared residues: 538) than the other three models whose sum of squared residues were (i) 4626, (ii) 4983, and (iii) 1748, respectively. We compared fluxes determined using the metabolite reflux model to those determined using an independent methodology involving an excessively long ILE to wash out initial biomass and a minimal reflux model. This comparison showed identical or similar distributions for a majority of fluxes, thus validating our comprehensive reflux model. In summary, we have demonstrated the need for quantifying interactions between initially present biomass and newly synthesized biomass in batch ILEs, especially through the use of ≈100% U-(13)C carbon sources. Our ILEs reveal a high amount of metabolite reflux in poplar cell suspensions, which is well explained by a comprehensive metabolite reflux model.


Subject(s)
Amino Acids/chemistry , Isotope Labeling/methods , Metabolic Flux Analysis/methods , Plant Cells/metabolism , Populus/metabolism , Algorithms , Biomass , Carbon Isotopes/metabolism , Glucose/metabolism , Models, Biological , Populus/classification , Suspensions , Systems Biology
15.
Methods Mol Biol ; 1090: 155-79, 2014.
Article in English | MEDLINE | ID: mdl-24222416

ABSTRACT

Metabolic flux analysis (MFA) is a powerful tool for exploring and quantifying carbon traffic in metabolic networks. Accurate flux quantification requires (1) high-quality isotopomer measurements, usually of biomass components including proteinogenic/free amino acids or central carbon metabolites, and (2) a mathematical model that relates the unknown fluxes to the measured isotopomers. Modeling requires a thorough knowledge of the structure of the underlying metabolic network, often available from many databases, as well as the ability to make reasonable assumptions that will enable simplification of the model. Here we describe a general methodology underlying computer-aided mathematical modeling of a flux-isotopomer relationship and some of the accompanying data-processing steps. One of two modeling strategies will need to be employed, depending on the type of isotope labeling experiment performed. These strategies-steady-state modeling and instationary modeling-have different experimental and computational demands. We discuss the concepts underlying these two types of modeling and demonstrate steady-state modeling in a step-by-step manner. Our methodology should be applicable to most isotope-assisted MFA applications and should serve as a general framework applicable to many realistic metabolic networks with little modification.


Subject(s)
Amino Acids/chemistry , Metabolic Flux Analysis , Algorithms , Amino Acids/metabolism , Carbohydrate Metabolism , Carbon Isotopes , Kinetics , Mass Spectrometry , Metabolic Networks and Pathways , Models, Biological , Plants/metabolism , Protein Biosynthesis
16.
Methods Mol Biol ; 1083: 109-31, 2014.
Article in English | MEDLINE | ID: mdl-24218213

ABSTRACT

Isotope labeling experiments (ILEs) offer a powerful methodology to perform metabolic flux analysis. However, the task of interpreting data from these experiments to evaluate flux values requires significant mathematical modeling skills. Toward this, this chapter provides background information and examples to enable the reader to (1) model metabolic networks, (2) simulate ILEs, and (3) understand the optimization and statistical methods commonly used for flux evaluation. A compartmentalized model of plant glycolysis and pentose phosphate pathway illustrates the reconstruction of a typical metabolic network, whereas a simpler example network illustrates the underlying metabolite and isotopomer balancing techniques. We also discuss the salient features of commonly used flux estimation software 13CFLUX2, Metran, NMR2Flux+, FiatFlux, and OpenFLUX. Furthermore, we briefly discuss methods to improve flux estimates. A graphical checklist at the end of the chapter provides a reader a quick reference to the mathematical modeling concepts and resources.


Subject(s)
Isotope Labeling , Metabolic Flux Analysis/methods , Models, Theoretical , Glycolysis , Intracellular Space/metabolism , Metabolic Networks and Pathways , Metabolomics/methods , Models, Biological , Pentose Phosphate Pathway , Plants/metabolism
17.
Methods Mol Biol ; 1083: 213-30, 2014.
Article in English | MEDLINE | ID: mdl-24218218

ABSTRACT

A genome-scale model (GSM) is an in silico metabolic model comprising hundreds or thousands of chemical reactions that constitute the metabolic inventory of a cell, tissue, or organism. A complete, accurate GSM, in conjunction with a simulation technique such as flux balance analysis (FBA), can be used to comprehensively predict cellular metabolic flux distributions for a given genotype and given environmental conditions. Apart from enabling a user to quantitatively visualize carbon flow through metabolic pathways, these flux predictions also facilitate the hypothesis of new network properties. By simulating the impacts of environmental stresses or genetic interventions on metabolism, GSMs can aid the formulation of nontrivial metabolic engineering strategies. GSMs for plants and other eukaryotes are significantly more complicated than those for prokaryotes due to their extensive compartmentalization and size. The reconstruction of a GSM involves creating an initial model, curating the model, and then rendering the model ready for FBA. Model reconstruction involves obtaining organism-specific reactions from the annotated genome sequence or organism-specific databases. Model curation involves determining metabolite protonation status or charge, ensuring that reactions are stoichiometrically balanced, assigning reactions to appropriate subcellular compartments, deleting generic reactions or creating specific versions of them, linking dead-end metabolites, and filling of pathway gaps to complete the model. Subsequently, the model requires the addition of transport, exchange, and biomass synthesis reactions to make it FBA-ready. This cycle of editing, refining, and curation has to be performed iteratively to obtain an accurate model. This chapter outlines the reconstruction and curation of GSMs with a focus on models of plant metabolism.


Subject(s)
Genomics , Metabolome , Metabolomics , Models, Biological , Plants/genetics , Plants/metabolism , Biological Transport , Databases, Genetic , Genomics/methods , Intracellular Space/metabolism , Metabolic Networks and Pathways , Metabolomics/methods , Online Systems , Software
18.
Microb Cell Fact ; 12: 109, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24228629

ABSTRACT

BACKGROUND: Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. RESULTS: Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-(13)C glucose and naturally abundant (~99% (12)C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichment of 88%, thus providing convincing evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope labeling experiment utilizing 1-(13)C glucose and subsequent metabolic pathway analysis indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by performing a 2-(13)C glycerol isotope labeling experiment. Additionally, gene expression assays showed that known, native glucose transporters in Pt are largely insensitive to glucose or light, whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic enzyme, is overexpressed in light but insensitive to glucose. CONCLUSION: We have shown that Pt can use glucose as a primary carbon source when grown in light, but cannot use glucose to sustain growth in the dark. We further analyzed the metabolic mechanisms underlying the mixotrophic metabolism of glucose and found isotopic evidence for unusual pathways active in Pt. These insights expand the envelope of Pt cultivation methods using organic substrates. We anticipate that they will guide further engineering of Pt towards sustainable production of fuels, pharmaceuticals, and platform chemicals.


Subject(s)
Glucose/metabolism , Microalgae/metabolism , Amino Acids , Animals , Diatoms , Glycolysis , Isotope Labeling , Microalgae/chemistry
19.
BMC Syst Biol ; 7: 126, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24228871

ABSTRACT

BACKGROUND: Gene regulatory networks (GRNs) are models of molecule-gene interactions instrumental in the coordination of gene expression. Transcription factor (TF)-GRNs are an important subset of GRNs that characterize gene expression as the effect of TFs acting on their target genes. Although such networks can qualitatively summarize TF-gene interactions, it is highly desirable to quantitatively determine the strengths of the interactions in a TF-GRN as well as the magnitudes of TF activities. To our knowledge, such analysis is rare in plant biology. A computational methodology developed for this purpose is network component analysis (NCA), which has been used for studying large-scale microbial TF-GRNs to obtain nontrivial, mechanistic insights. In this work, we employed NCA to quantitatively analyze a plant TF-GRN important in floral development using available regulatory information from AGRIS, by processing previously reported gene expression data from four shoot apical meristem cell types. RESULTS: The NCA model satisfactorily accounted for gene expression measurements in a TF-GRN of seven TFs (LFY, AG, SEPALLATA3 [SEP3], AP2, AGL15, HY5 and AP3/PI) and 55 genes. NCA found strong interactions between certain TF-gene pairs including LFY → MYB17, AG → CRC, AP2 → RD20, AGL15 → RAV2 and HY5 → HLH1, and the direction of the interaction (activation or repression) for some AGL15 targets for which this information was not previously available. The activity trends of four TFs - LFY, AG, HY5 and AP3/PI as deduced by NCA correlated well with the changes in expression levels of the genes encoding these TFs across all four cell types; such a correlation was not observed for SEP3, AP2 and AGL15. CONCLUSIONS: For the first time, we have reported the use of NCA to quantitatively analyze a plant TF-GRN important in floral development for obtaining nontrivial information about connectivity strengths between TFs and their target genes as well as TF activity. However, since NCA relies on documented connectivity information about the underlying TF-GRN, it is currently limited in its application to larger plant networks because of the lack of documented connectivities. In the future, the identification of interactions between plant TFs and their target genes on a genome scale would allow the use of NCA to provide quantitative regulatory information about plant TF-GRNs, leading to improved insights on cellular regulatory programs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Computational Biology/methods , Gene Regulatory Networks , Transcription Factors/metabolism
20.
Front Microbiol ; 4: 200, 2013.
Article in English | MEDLINE | ID: mdl-23898325

ABSTRACT

Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo (13)C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast.

SELECTION OF CITATIONS
SEARCH DETAIL
...