Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Environ Res ; 258: 119396, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871276

ABSTRACT

Adsorption of essential amino acid, Tryptophan (Tryp) on synthesized gibbsite nanoparticles and their applications in eliminating of antibiotic ciprofloxacin (CFX) and bacteria Escherichia coli (E. coli) in aqueous solution. Nano-gibbsite which was successfully fabricated, was characterized by XRD, TEM-SAED, FT-IR, SEM-EDX and zeta potential measurements. The selected parameters for Tryp adsorption on nano-gibbsite to form biomaterial, Tryp/gibbsite were pH 11, gibbsite dosage 20 mg/mL and 1400 mg/L Tryp. The optimum conditions for CFX removal using Tryp/gibbsite were adsorption time 60 min, pH 5, and 20 mg/mL Tryp/gibbsite dosage. The CFX removal significantly raised from 63 to 90% when using Tryp/gibbsite. The Freundlich and pseudo-second-order models achieved the best fits for CFX adsorption isotherm and kinetic on Tryp/gibbsite, respectively. The amount of CFX increased with increasing ionic strength, suggesting that both electrostatic and non-electrostatic interactions were important. After four reused time, CFX removal was greater than 66%, demonstrating that Tryp/gibbsite is reusable with high performance in removing CFX. The application in bacterial activity in term of E. coli reached greater than 98% that was the best material for bacteria inactivation. The present study reveals that Tryp/gibbsite is an excellent bio-material for removing CFX and E. coli.

2.
Sci Total Environ ; 921: 171117, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382614

ABSTRACT

Aerosol optical depth (AOD) and Ångström exponent (AE) are the major environmental indicators to perceive air quality and the impact of aerosol on climate change and health as well as the global atmospheric conditions. In the present study, an average of AOD and AE data from Tera and Aqua satellites of MODIS sensors has been investigated over 7 years i.e., from 2016 to 2022, at four locations over Northern Great Plains. Both temporal and seasonal variations over the study periods have been investigated to understand the behavior of AOD and AE. Over the years, the highest AOD and AE were observed in winter season, varying from 0.75 to 1.17 and 1.30 to 1.63, respectively. During pre-monsoon season, increasing trend of AOD varying from 0.65 to 0.95 was observed from upper (New Delhi) to lower (Kolkata) Gangetic plain, however, during monsoon and post-monsoon a reverse trend varying from 0.85 to 0.65 has been observed. Seasonal and temporal aerosol characteristics have also been analyzed and it has been assessed that biomass burning was found to be the major contributor, followed by desert dust at all the locations except in Lucknow, where the second largest contributor was dust instead of desert dust. During season-wise analysis, biomass burning was also found to be as the major contributor at all the places in all the seasons except New Delhi and Lucknow, where dust was the major contributor during pre-monsoon. A boosting regression algorithm was done using machine learning to explore the relative influence of different atmospheric parameters and pollutants with PM2.5. Water vapor was assessed to have the maximum relative influence i.e., 51.66 % followed by CO (21.81 %). This study aims to help policy makers and decision makers better understand the correlation between different atmospheric components and pollutants and the contribution of different types of aerosols.

3.
J Environ Manage ; 354: 120326, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387349

ABSTRACT

Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.


Subject(s)
Pesticides , Humans , Pesticides/chemistry , Plants , Metabolomics
4.
Environ Res ; 236(Pt 2): 116795, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37541412

ABSTRACT

Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.


Subject(s)
Metal-Organic Frameworks , Uranium , Water Pollutants, Chemical , Humans , Water , Adsorption , Water Pollutants, Chemical/analysis
5.
Environ Dev Sustain ; : 1-46, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37363010

ABSTRACT

Imposing lockdown amid COVID-19 pandemic has severely affected flower cultivation and their trades. Flower plants are very sensitive to the harvesting, and any unexpected delay may cause great loss (~ 50-60%) to the farmers. In 2018-2019, the worth of total production of floriculture products was ~ Rs 571.38 crore. During lockdown, the availability of human laborers and restricted transport has disrupted the supply of flowers to the market. Hence, some alternative options are suggested here for the farmers, for example, conversion of decorative flowers (e.g., anthurium, China aster, globe amaranthus, sweet-william, anemone, sea lavender, etc.) and inflorescence (e.g., Michaelmas daisy, zinnia, statice, ferns, aspidistra, eucalyptus, magnolia, etc.) can also be into value-added products through drying and dehydration technologies. Many dehydration methods such as hot air oven, solar drying, press drying, freeze-drying, embedded drying, glycerine drying, and microwave oven drying polyester drying can be used for flower drying at room temperature (~ 25 °C). These floral and foliage dehydration techniques are quite simple, which can also be operated by unskilled persons. Moreover, it will generate self-employment for the youth and women along with increased revenue than selling fresh flowers. In this review, different techniques of flower drying have been discussed in detail along with the influencing factors, efficiency, economic feasibility, flower waste management and sustainability. Further, it has also been suggested how these techniques could be useful for farmers, researchers, and traders to create value-added products? Hence, the present paper could be very interesting for the flower growers, retailers, students, as well as floricultural scientists who are involved in flower production worldwide.

6.
Environ Sci Pollut Res Int ; 30(17): 48654-48675, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36849690

ABSTRACT

The electronic and electrical industrial sector is exponentially growing throughout the globe, and sometimes, these wastes are being disposed of and discarded with a faster rate in comparison to the past era due to technology advancements. As the application of electronic devices is increasing due to the digitalization of the world (IT sector, medical, domestic, etc.), a heap of discarded e-waste is also being generated. Per-capita e-waste generation is very high in developed countries as compared to developing countries. Expansion of the global population and advancement of technologies are mainly responsible to increase the e-waste volume in our surroundings. E-waste is responsible for environmental threats as it may contain dangerous and toxic substances like metals which may have harmful effects on the biodiversity and environment. Furthermore, the life span and types of e-waste determine their harmful effects on nature, and unscientific practices of their disposal may elevate the level of threats as observed in most developing countries like India, Nigeria, Pakistan, and China. In the present review paper, many possible approaches have been discussed for effective e-waste management, such as recycling, recovery of precious metals, adopting the concepts of circular economy, formulating relevant policies, and use of advance computational techniques. On the other hand, it may also provide potential secondary resources valuable/critical materials whose primary sources are at significant supply risk. Furthermore, the use of machine learning approaches can also be useful in the monitoring and treatment/processing of e-wastes. HIGHLIGHTS: In 2019, ~ 53.6 million tons of e-wastes generated worldwide. Discarded e-wastes may be hazardous in nature due to presence of heavy metal compositions. Precious metals like gold, silver, and copper can also be procured from e-wastes. Advance tools like artificial intelligence/machine learning can be useful in the management of e-wastes.


Subject(s)
Electronic Waste , Metals, Heavy , Waste Management , Electronic Waste/analysis , Artificial Intelligence , Waste Management/methods , Electronics , Recycling/methods
7.
Environ Res ; 216(Pt 2): 114618, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36279908

ABSTRACT

The adsorption and transformation of tetracyclines (TCs) antibiotics, including oxytetracycline (OTC), chlortetracycline (CTC), and tetracycline (TC), on the sodium dodecyl sulfate (SDS) surfactant-modified α-Al2O3 particles were comprehensively investigated in this study. The TCs adsorption was significantly enhanced by using the modified adsorbents compared with the use of the unmodified adsorbents. The experimental conditions were systematically optimized and found to be pH 4, NaCl 1 mM, the contact time of 180 min, and the adsorbent dosage of 25 mg. mL-1. The high maximum adsorption capacities were approximately 320, 85, and 91 mg. g-1 for TC, OTC, and CTC, respectively. Meanwhile, the great removal efficiencies of the three antibiotics TC, OTC, and CTC were correspondingly 91.85, 88.4, and 98.3%. The TCs adsorption isotherm and kinetics on the SDS-modified α-Al2O3 particles mainly governed by the electrostatic and hydrophobic interactions were clarified by a suitable two-step model, the Fourier transform infrared spectroscopy (FT-IR) and zeta potential measurements. Meanwhile, the TCs structural transformation determined by the liquid chromatography with tandem mass spectrometry (LC-MS/MS) measurement was promoted through the adsorption on the α-Al2O3 surface. The TCs transformation rates strongly affected by the TCs adsorption were in the order of CTC > TC > OTC. The found results are promised that the SDS-modified α-Al2O3 particles might behave as high-performance adsorbents to remove the TCs from aqueous solutions.


Subject(s)
Chlortetracycline , Oxytetracycline , Tetracyclines , Adsorption , Aluminum Oxide , Spectroscopy, Fourier Transform Infrared , Chromatography, Liquid , Tandem Mass Spectrometry , Oxytetracycline/chemistry , Anti-Bacterial Agents/chemistry , Chlortetracycline/chemistry , Surface-Active Agents
8.
Environ Sci Pollut Res Int ; 29(46): 69137-69152, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35947260

ABSTRACT

The level of nitrate in water has been increasing considerably all around the world due to vast application of inorganic nitrogen fertiliser and animal manure. Because of nitrate's high solubility in water, human beings are getting exposed to it mainly through various routes including water, food etc. Various regulations have been set for nitrate (45-50 mgNO3-/L) in drinking water to protect health of the infants from the methemoglobinemia, birth defects, thyroid disease, risk of specific cancers, i.e. colorectal, breast and bladder cancer caused due to nitrate poisoning. Different methods like ion exchange, adsorption, biological denitrification etc. have the ability to eliminate the nitrate from the aqueous medium. However, adsorption process got preference over the other approaches because of its simple design and satisfactory results especially with surface modified adsorbents or with mineral-based adsorbents. Different types of adsorbents have been used for this purpose; however, adsorbents derived from the biomass wastes have great adsorption capacities for nitrate such as tea waste-based adsorbents (136.43 mg/g), carbon nanotube (142.86 mg/g), chitosan beads (104 mg/g) and cetyltrimethylammonium bromide modified rice husk (278 mg/g). Therefore, a thorough literature survey has been carried out to formulate this review paper to understand various sources of nitrate pollution, route of exposure to the human beings, ill effects along with discussing the key developments as well as the new advancements reported in procuring low-cost efficient adsorbents for water purification.


Subject(s)
Chitosan , Drinking Water , Nanotubes, Carbon , Water Pollutants, Chemical , Water Purification , Adsorption , Animals , Cetrimonium , Fertilizers , Humans , Manure , Minerals , Nitrates , Nitrogen , Nitrogen Oxides , Tea , Water Purification/methods , Water Resources
9.
Environ Sci Pollut Res Int ; 29(42): 62851-62869, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35831652

ABSTRACT

"Water" contamination by mercury Hg(II) has become the biggest concern due to its severe toxicities on public health. There are different conventional techniques like ion exchange, reverse osmosis, and filtration that have been used for the elimination of Hg(II) from the aqueous solutions. Although, these techniques have some drawbacks during the remediation of Hg(II) present in water. Adsorption could be a better option for the elimination of Hg(II) from the aqueous solutions. "Conventional adsorbents" like zeolite, clay, and activated carbons are inefficient for this purpose. Recently, nanomaterials have attracted attention for the elimination of Hg(II) from the aqueous solutions due to high porosity, better surface properties, and high efficiency. In this review, a thorough discussion has been carried out on the synthesis and characterization of nanomaterials along with mechanisms involved in the elimination of Hg(II) from aqueous solutions.


Subject(s)
Mercury , Nanostructures , Water Pollutants, Chemical , Water Purification , Zeolites , Adsorption , Clay , Hydrogen-Ion Concentration , Mercury/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods
10.
Environ Res ; 210: 112943, 2022 07.
Article in English | MEDLINE | ID: mdl-35176314

ABSTRACT

This study aims to investigate the adsorption characteristics of cationic surfactant, cetyltrimethylamonium bromide (CTAB) onto negatively nanosilica rice husk surface and the application for antibiotic treatment in water environment. Adsorption of CTAB onto nanosilica increased with an increase of solution pH, due to an enhancement of the electrostatic attraction between cationic methylamomethylamonium groups and negatively charged nanosilica surface enhanced at higher pH. Adsorption of CTAB decreased with a decrease of ionic strength while a common intersection point (CIP) was observed for adsorption isotherm at different ionic strengths, suggesting that hydrophobic interactions between alkyl chains in CTAB molecules significantly induced adsorption and admicelles with bilayer formation were dominant than monolayer of hemimicelles. The CTAB functionalized nanosilica (CFNS) was applied for removal of beta-lactam amoxicillin (AMX). The best conditions for AMX treatment using CFNS were selected as pH 10, contact time 60 min and CFNS dosage 10 mg/mL. Removal efficiency of AMX using CFNS reached to 100% under optimum conditions while it was only 25.01% using nanosilica without CTAB. The maximum AMX adsorption capacity using CFNS of about 25 mg/g was much higher than other adsorbents. The effects of different organics such as humic acid, anionic surfactant, and other antibiotics on AMX removal using CFNS were also studied. A two-step model can fit CTAB uptake isotherms onto nanosilica and AMX onto CFNS well at different KCl concentrations. Based on the desorption of CTAB with AMX adsorption as well as adsorption isotherms, the change in surface charge and functional vibration groups after adsorption, we indicate that AMX adsorption onto CFNS was mainly controlled by electrostatic interaction. We reveal that CFNS is an excellent adsorbent for antibiotic treatment from aqueous solution.


Subject(s)
Oryza , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Cetrimonium , Kinetics , Surface-Active Agents , Water/chemistry , Water Pollutants, Chemical/analysis , beta-Lactams
11.
J Environ Manage ; 301: 113868, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34628282

ABSTRACT

Knowing the effluent quality of treatment systems in advance to enable the design of treatment systems that comply with environmental standards is a realistic strategy. This study aims to develop machine learning - based predictive models for designing the subsurface constructed wetlands (SCW). Data from the SCW literature during the period of 2009-2020 included 618 sets and 10 features. Five algorithms namely, Random forest, Classification and Regression trees, Support vector machines, K-nearest neighbors, and Cubist were compared to determine an optimal algorithm. All nine input features including the influent concentrations, C:N ratio, hydraulic loading rate, height, aeration, flow type, feeding, and filter type were confirmed as relevant features for the predictive algorithms. The comparative result revealed that Cubist is the best algorithm with the lowest RMSE (7.77 and 21.77 mg.L-1 for NH4-N and COD, respectively) corresponding to 84% of the variance in the effluents explained. The coefficient of determination of the Cubist algorithm obtained for NH4-N and COD prediction from the test data were 0.92 and 0.93, respectively. Five case studies of the application of SCW design were also exercised and verified by the prediction model. Finally, a fully developed Cubist algorithm-based design tool for SCW was proposed.


Subject(s)
Machine Learning , Wetlands , Algorithms , Nitrogen
12.
Bull Environ Contam Toxicol ; 108(4): 616-628, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34536097

ABSTRACT

Arsenic intake can cause human health disorders to the lungs, urinary tract, kidney, liver, hyper-pigmentation, muscles, neurological and even cancer. Biochar is potent, economical and ecologically sound adsorbents for water purification. After surface modifications, adsorption capacity of biochar significantly increased due to high porosity and reactivity. Adsorption capacities of the biochar derived from the municipal solid waste and KOH mixed municipal solid waste were increased from 24.49 and 30.98 mg/g for arsenic adsorption. Complex formation, electrostatic behavior and ion exchange are important mechanisms for arsenic adsorption. Organic arsenic removal using biochar is a major challenge. Hence, more innovative research should be conducted to achieve one of the 17 sustainable development goals of the United Nations i.e. "providing safe drinking water for all". This review is focused on the arsenic removal from water using pristine and modified biochar adsorbents. Recent advances in production methods of biochar adsorbents and mechanisms of arsenic removal from water are also illustrated.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Adsorption , Arsenic/analysis , Charcoal , Humans , Water
13.
J Environ Manage ; 301: 113851, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34597952

ABSTRACT

In present work, biodegradation of 4-Chlorophenol (4-CP) has been successfully achieved using bacteria i.e. Bacillus subtilis (MF447841.1), which was isolated from the wastewater of a nearby drain of Hyundai Motor Company service centre, Agartala, Tripura (India). Geonomic identification was carried out by 16 S rDNA technique and phylogenetic processes. Both, batch and column mode of experiments were performed to optimize various parameters (initial concentration, contact time, dosages etc.) involved in the significant biodegradation of 4-CP. Based on R2 value (0.9789), the Levenspiel's model was found to be best fit than others. The kinetic parameters; specific growth rate (µ), yield of cell mass (YX/S), and saturation constant (KS), were obtained as 0.6383 (h-1), 0.35 (g/g), and 0.006884 (g/L), respectively. The isolated strain has shown the ability of degrading 4-CP up to 1000 mg/L initial concentration within 40 h. Bacterial strain was immobilized via developing calcium alginate beads along by optimizing weight proportion of calcium chloride and sodium alginate and size of the bead for further experiments. Various process parameters i.e. initial feed concentration, bed height, rate of flow of were optimized during packed bed reactor (PBR) study. Maximum biodegradation efficiency of 4-CP was observed as 45.39% at initial concentration of 500 mg/L within 105 min, using 2 mm size of immobilized beads which were formed using 3.5% w/v of both calcium chloride and sodium alginate within. Thus, Bacillus subtilis (MF447841.1) could be used for biological remediation of 4-CP pollutant present in wastewater. Moreover, because of affordable and eco-friendly nature of water treatment, relatively it has the better scope of commercialization.


Subject(s)
Bacillus subtilis , Bioreactors , Biodegradation, Environmental , Chlorophenols , Phylogeny
14.
Environ Sci Pollut Res Int ; 28(46): 66485-66495, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34647213

ABSTRACT

This paper presents the progress made by India and China in the field of waste management and its disposal since l996 to 2020. To access it, bibliometric analysis has been carried out using SCOPUS linked SCImago electronic database. Different bibliometric indicators such as documents, citable documents, external and self-citations, and external and self-citations per document along with their annual corresponding growth (ACG) have been calculated in order to explore the progresses made in both the countries. China has contributed 16.3% and India 4.3% to the total documents produced worldwide during 1996-2020 in waste management with the average ACG of 26.42% and 15.37%, respectively, during the same time span. Also, the average ACG for self-citations of published research documents is more than that of external citations for both the countries. In addition to that, the average self-citation magnitude reported for China (28,475) is more than that of India (5223), whereas this trend reverses in the case of average external citation per document with values 16.9 and 28.94, respectively. Moreover, the waste management practices being followed in both countries have also been compared and also presented so that it could be beneficial for the country which is relatively not good in the same.


Subject(s)
Bibliometrics , Waste Management , China , Databases, Factual , India
15.
Water Sci Technol ; 84(2): 445-457, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34312350

ABSTRACT

In this research, an efficient, ecofriendly method of using coal fly ash in the form of zeolite to treat wastewater containing dyes was studied. Response surface methodology involving Box-Behnken design was applied to a batch process to evaluate the effect of process parameters such as contact time, dye concentration, agitation speed, pH, and adsorbent dosage onto zeolite. Disperse Orange 25 (DO) dye showed a maximum of 96% removal under optimal conditions of contact time of 119 min, dye concentration of 38.00 mg/L, agitation speed of 158 rpm, pH of 6.10, and adsorbent dosage of 0.67 g/L, whereas 95.23% of Disperse Blue 79:1 (DB) dye removal was observed at adsorbent dose of 1.05 g/L, dye concentration of 26.72 mg/L, agitation speed of 145 rpm, pH of 5.68, and contact time of 122 min. It was concluded that cenosphere-derivatized zeolite adsorbent is efficient, ecofriendly, and economical and has high potential for the removal of DO and DB dyes from aqueous solutions.


Subject(s)
Water Pollutants, Chemical , Zeolites , Adsorption , Coloring Agents , Textiles
16.
Environ Sci Pollut Res Int ; 28(31): 41576-41595, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34097218

ABSTRACT

Warming of the earth is considered as the major adverse effect of climate change along with other abnormalities such as non-availability of water resources, decreased agriculture production, food security, rise in seawater level, glaciers melting, and loss of biodiversity. Over the years, decreased agriculture production and water quality degradation have been observed due to climatic abnormalities. Crop production is highly sensitive to climate. It gets affected by long-term trends in average rainfall and temperature, annual climate variations, shocks during different stages of growth, and extreme weather events. Globally, the areas sown for the major crops of barley, maize, rice, sorghum, soya bean, and wheat have all seen an increase in the percentage of area affected by drought as defined in terms of the Palmer Drought Severity Index since the 1960s, from approximately 5-10% to approximately 15-25%. Increase in temperature will be observed in terms of wheat yield losses - 5.5 ± 4.4% per degree Celsius for the United States, - 9.1 ± 5.4% per degree Celsius for India, and - 7.8 ± 6.3% per degree Celsius for Russia as these countries are more vulnerable to temperature increase. Water management through increasing storage capacity (or rainwater storage), fair policies for water supply and distribution, river health, and watershed management can reduce the negative effects of climate change on water resource availability. Similarly, climate change-resistant crop development, water management in irrigation, adapting climate-smart agriculture approach, and promoting indigenous knowledge can ensure the food security via increasing agricultural yield. Technical intervention can equip the farmers with the scientific analyses of the climatic parameters required for the sustainable agriculture management. These technologies may include application of software, nutrient management, water management practices, instruments for temperature measurement and soil health analysis etc. Holistic efforts of the stakeholders (farmers, local society, academia, scientists, policy makers, NGOs etc.) can provide better results to reduce the risks of climate change on agriculture and water resources as discussed in this paper. Graphical abstract.


Subject(s)
Agriculture , Water Resources , Climate Change , Crops, Agricultural , Water Supply
17.
Chemosphere ; 280: 130654, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34162069

ABSTRACT

Mercury (Hg(II)) is the 16th rarest element present in the earth's crust. Due to rapid industrialization and urban expansions, the mercury concentration has been elevated in the environment. Hg(II) contamination in the aqueous environment has become a great challenge for human beings. The main source of Hg(II) in the aqueous phase is untreated effluent industries (such as the paper industry). Hg(II) is non-biodegradable in nature and even its trace amount in an aqueous environment can pose chronic threats among the humans (damage to the central nervous system, respiratory system, and cardiovascular system, mutation of DNA), animals, and aquatic creatures. Therefore, the removal of mercury from aqueous solutions is an urgent need of the modern era. The conventional techniques such as ion exchange, precipitation, membrane filtrations are costly and also generate byproducts in the environment. Bioremediation is a sustainable, environmentally sound, and cost-effective technique to remove Hg(II) from the aqueous solutions. In this process, naturally occurring microorganisms are utilized to remove the Hg(II) from the aqueous solutions. Lentinus edodes, U. lactuca, and Typha domingensis are found to have great potential to remove mercury from water ranged from ~100 mg g-1 to 337 mg g-1.


Subject(s)
Mercury , Water Pollutants, Chemical , Water Purification , Animals , Biodegradation, Environmental , Humans , Hydrogen-Ion Concentration , Mercury/analysis , Solutions , Water
18.
Environ Sci Pollut Res Int ; 27(36): 44861-44862, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33141386

ABSTRACT

The correct Table 4 is presented in this paper.

19.
Environ Pollut ; 267: 115474, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32889516

ABSTRACT

Disinfection means the killing of pathogenic organisms (e.g. bacteria and its spores, viruses, protozoa and their cysts, worms, and larvae) present in water to make it potable for other domestic works. The substances used in the disinfection of water are known as disinfectants. At municipal level, chlorine (Cl2), chloramines (NH2Cl, NHCl2), chlorine dioxide (ClO2), ozone (O3) and ultraviolet (UV) radiations, are the most commonly used disinfectants. Chlorination, because of its removal efficiency and cost effectiveness, has been widely used as method of disinfection of water. But, disinfection process may add several kinds of disinfection by-products (DBPs) (∼600-700 in numbers) in the treated water such as Trihalomethanes (THM), Haloacetic acids (HAA) etc. which are detrimental to the human beings in terms of cytotoxicity, mutagenicity, teratogenicity and carcinogenicity. In water, THMs and HAAs were observed in the range from 0.138 to 458 µg/L and 0.16-136 µg/L, respectively. Thus, several regulations have been specified by world authorities like WHO, USEPA and Bureau of Indian Standard to protect human health. Some techniques have also been developed to remove the DBPs as well as their precursors from the water. The popular techniques of DBPs removals are adsorption, advance oxidation process, coagulation, membrane based filtration, combined approaches etc. The efficiency of adsorption technique was found up to 90% for DBP removal from the water.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Chlorine , Disinfectants/analysis , Disinfectants/toxicity , Disinfection , Drinking Water/analysis , Halogenation , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
20.
Environ Sci Pollut Res Int ; 27(36): 44771-44796, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32975757

ABSTRACT

Effective and substantial remediation of contaminants especially heavy metals from water is still a big challenge in terms of both environmental and biological perspectives because of their adverse effects on the human health. Many techniques including adsorption, ion exchange, co-precipitation, chemical reduction, ultrafiltration, etc. are reported for eliminating heavy metal ions from the water. However, adsorption has preferred because of its simple and easy handlings. Several types of adsorbents are observed and documented well for the purpose. Recently, highly porous metal-organic frameworks (MOFs) were developed by incorporating metals and organic ligands together and claimed as potent adsorbents for the remediation of highly toxic heavy metals from the aqueous solutions due to their unique features like greater surface area, high chemical stability, green and reuse material, etc. In this review, the authors discussed systematically some recent developments about secure MOFs to eliminate the toxic metals such as arsenic (both arsenite and arsenate), chromium(VI), cadmium (Cd), mercury (Hg) and lead (Pb). MOFs are observed as the most efficient adsorbents with greater selectivity as well as high adsorption capacity for metallic contamination. Graphical abstract.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Heavy Metal Poisoning , Humans , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...