Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 265(Pt 2): 131088, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521315

ABSTRACT

Curcumin is a multitargeting nutraceutical with numerous health benefits, however, its efficacy is limited due to poor aqueous solubility and reduced bioavailability. While nano-formulation has emerged as an alternative to encounter such issues, it often involves use of toxic solvents. Microbial synthesis may be an innovative solution to address this lacuna. Present study, for the first time, reports exploitation of Aureobasidium pullulans RBF4A3 for production of nano-curcumin. For this purpose, Aureobasidium pullulans RBF4A3 was inoculated in YPD media along with curcumin (0.1 mg/mL) and incubated for 24 h, 48 h, and 72 h. Subsequently, residual sugar, biomass, EPS concentration, curcumin concentration, and curcumin nanoparticle size were measured. As a result, nano-curcumin with an average particle size of 31.63 nm and enhanced aqueous solubility was obtained after 72 h. Further, investigations suggested that pullulan, a reducing polysaccharide, played a significant role in curcumin nano-formulation. Pullulan-mediated nano-curcumin formulation, with an average particle size of 24 nm was achieved with conversion rate of around 59.19 %, suggesting improved aqueous solubility. Additionally, the anti-oxidant assay of the resulting nano-curcumin was around 53.7 % per µg. Moreover, kinetics and thermodynamic studies of pullulan-based nano-curcumin revealed that it followed first-order kinetics and was favored by elevated temperature for efficient bio-conversion. Also, various physico-chemical investigations like FT-IR, NMR, and XRD reveal that pullulan backbone remains intact while forming curcumin nanoparticle. This study may open up new avenues for synthesizing nano-polyphenols through a completely green and solvent free process with plausible diverse applications.


Subject(s)
Ascomycota , Aureobasidium , Curcumin , Glucans , Fermentation , Curcumin/pharmacology , Spectroscopy, Fourier Transform Infrared , Ascomycota/chemistry , Water/chemistry
2.
Int J Biol Macromol ; 227: 231-240, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36535354

ABSTRACT

The current study, for the first time, attempts to co-encapsulate Bacillus coagulans spores as probiotics and vitamin B9 in the polysaccharide-based matrix for their targeted delivery. Instead of vegetative cells, probiotic spores were chosen owing to their higher stability. The matrix, tri-composite hydrogel, was synthesized from gellan, κ-carrageenan, and chitosan through self-assembly devoid of chemical cross-linkers. Hence, it was found suitable for application in the co-encapsulation of bioactive compounds. The synthesized hydrogel showed remarkable encapsulation efficiency for folic acid and probiotic spores, both individually and in combination. At acidic pH, loaded hydrogel exhibited 28.42 % and 45.14 % release of spores and folic acid, respectively, which was comparatively lower than the trends observed under neutral and alkaline pH. These results were correlated with the release pattern observed during in vitro digestibility studies. Moreover, spore conversion to vegetative cells and its high colonization were observed in the simulated intestinal phase. Therefore, the matrix maintained viability and stability of co-encapsulated folic acid and bacterial spores in gastric pH while they were slowly released in the intestinal phase. These promising findings pave the way to develop a natural matrix for co-encapsulating various bioactive compounds and probiotics.


Subject(s)
Bacillus coagulans , Chitosan , Probiotics , Carrageenan/chemistry , Hydrogels , Chitosan/chemistry , Folic Acid , Delayed-Action Preparations , Spores, Bacterial , Probiotics/chemistry
3.
ACS Omega ; 7(45): 40724-40739, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406482

ABSTRACT

In recent times, nutrition and diet have become prominent health paradigms due to sedentary lifestyle disorders. Preventive health care strategies are becoming increasingly popular instead of treating and managing diseases. A nutraceutical is an innovative concept that offers additional health benefits beyond its fundamental nutritional value. These nutraceuticals have the potential to reduce the exorbitant use of synthetic drugs because the modern medicine approach of treating diseases with high-tech, expensive supplements, and long-term consequences aggravates consumers. However, most nutraceuticals are plant-derived, making them susceptible to degradation and prone to chemical instability, poor solubility, unpleasant taste, and bioactivity loss before absorption to the targeted site. To counteract this problem, the bioavailability of these labile compounds can be maximized by encapsulating them in protective nanocarriers. It is crucial that nanoencapsulation technologies convert bioactive compounds into forms that can be easily combined with functional foods and beverages without adversely affecting their organoleptic properties. In recent years, nanoformulations using food-grade materials, such as polysaccharides, proteins, lipids, etc., have received considerable attention. Among them, microbial polysaccharides are biocompatible, nontoxic, and nonimmunogenic, and most of them are US-FDA approved and can undergo tailored modifications. The nanoformulation of microbial polysaccharide is a relatively new frontier which has several advantages over existing systems. The present article, for the first time, comprehensively reviews microbial polysaccharides-based nanodelivery systems for nutraceuticals and discusses various techno-commercial aspects of these nanotechnological preparations. Moreover, this has also attempted to draw a future research perspective in this area.

4.
Arch Microbiol ; 204(7): 399, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35713724

ABSTRACT

Marine microbes produce polysaccharides with unique physicochemical and functional properties that help them survive in harsh marine environments. However, only a handful of marine exopolysaccharides (EPSs) have been reported to date. The present study explored the seashore of Visakhapatnam, India, to report a novel exopolysaccharide designated as Br42 produced by Brevibacillus borstelensis M42. The isolate was identified through morphological, biochemical, phylogenetic, and genome sequencing analysis. The studies on fermentation kinetics revealed that EPS Br42 was a primary metabolite with a maximum production of 1.88 ± 0.02 g/L after 60 h when production broth was fortified with 2% glucose. Additionally, EPS Br42 was found to be a heteropolysaccharide consisting of glucose and galacturonic acid with a molecular weight of about 286 kDa. Interestingly, this molecule possesses industrially relevant functional properties such as water-holding (510 ± 0.35%), oil-holding (374 ± 0.12% for coconut oil and 384 ± 0.35% for olive oil), and swelling capacities (146.6 ± 5.75%). EPS Br42 could form an emulsion that was stable at a wide pH range for about 72 h and, in fact, performed better as compared to Span 20, a commercially used synthetic emulsifier. Moreover, this EPS was also found to be heat stable and exhibited non-Newtonian pseudoplastic behavior. These physicochemical and functional properties of polysaccharides suggest that the EPS Br42 has potential for multifarious industrial applications as an emulsifier, stabilizer, viscosifier, and binding agent.


Subject(s)
Brevibacillus , Polysaccharides, Bacterial , Brevibacillus/genetics , Brevibacillus/metabolism , Glucose/metabolism , Phylogeny
5.
Front Chem ; 9: 761682, 2021.
Article in English | MEDLINE | ID: mdl-34778212

ABSTRACT

Dyes are one of the most hazardous chemicals causing significant environmental pollution and affecting water quality. Majority of the existing methods for dye removal and degradation involve synthetic membranes and use of hazardous chemicals, further resulting in secondary pollution. The present study reports polysaccharide based novel composite hydrogel as biodegradable matrix for pH-responsive selective adsorption of cationic/anionic dyes. This membrane showed pH-responsive adsorption of methyl green (MG) and methyl orange (MO) with similar adsorption equilibrium, i.e., 315 and 276 mg g-1, respectively. Interestingly, selective adsorption at different pH has allowed separation of dye mixtures that holds incredible industrial importance for dyes recovery. The hydrogel matrix was able to completely separate MG, a model cationic dye at neutral pH from the dye mixture whereas, it was possible to remove 60% MO, a model anionic dye at acidic pH. Furthermore, comprehensive isothermal and kinetic studies of adsorption revealed that Freundlich isotherm describing the multilayer coverage and pseudo-second-order kinetics were followed. Thermodynamic studies indicated that the adsorption process was spontaneous and endothermic. In fact, the membrane was reusable for at least ten cycles and exhibited desorption efficiency of 80 and 60% for MO and MG, respectively, which may be further recycled to make the process environmentally sustainable. Overall, this study proposes an inexpensive, simple, biologically safe, and efficient adsorbent material for dye effluent treatment.

6.
Space Sci Rev ; 217(8): 82, 2021.
Article in English | MEDLINE | ID: mdl-34789949

ABSTRACT

Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cannot be traced back to an observed CME, or, if the CME is identified, its origin may be elusive or ambiguous in coronal images. Such CMEs have been termed "stealth CMEs". In this review, we focus on these "problem" geomagnetic storms in the sense that the solar/CME precursors are enigmatic and stealthy. We start by reviewing evidence for stealth CMEs discussed in past studies. We then identify several moderate to strong geomagnetic storms (minimum Dst < - 50  nT) in solar cycle 24 for which the related solar sources and/or CMEs are unclear and apparently stealthy. We discuss the solar and in situ circumstances of these events and identify several scenarios that may account for their elusive solar signatures. These range from observational limitations (e.g., a coronagraph near Earth may not detect an incoming CME if it is diffuse and not wide enough) to the possibility that there is a class of mass ejections from the Sun that have only weak or hard-to-observe coronal signatures. In particular, some of these sources are only clearly revealed by considering the evolution of coronal structures over longer time intervals than is usually considered. We also review a variety of numerical modelling approaches that attempt to advance our understanding of the origins and consequences of stealthy solar eruptions with geoeffective potential. Specifically, we discuss magnetofrictional modelling of the energisation of stealth CME source regions and magnetohydrodynamic modelling of the physical processes that generate stealth CME or CME-like eruptions, typically from higher altitudes in the solar corona than CMEs from active regions or extended filament channels.

7.
Colloids Surf B Biointerfaces ; 205: 111891, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34116400

ABSTRACT

The proliferating demand for sustainable, biodegradable, and biologically safe materials has triggered the development of polysaccharide-based hydrogels. The translation of research on single polysaccharide-based hydrogels into their desired clinical or industrial application is minimal. This is attributable to their lack of mechanical strength, inadequate stability, and constrained the possibility of their modulation to obtain the desired property. Polysaccharide-based composite hydrogels (PCHs) have proven their mantle to counteract this issue while expanding the horizons for their applications. PCHs can be fabricated by physical and/or chemical interlinking techniques, which entails the association of macromolecular chain linkages. The resulting composites can impart remarkably higher stability and elevate the suitability and efficiency of the system. Owing to these advantages, the research on PCHs has been gaining momentum. They are emerging as a lucrative alternative for the conventional molecules used for the fabrication of such materials. The review would initially focus on providing a detailed outlook for the various physical/chemical techniques involved in the preparation of PCHs. Subsequently, the characterization techniques used to understand the structural and chemical behavior of PCHs would be discussed. The article would also elaborate on the various fields of application and the possible areas for future research of PCHs.


Subject(s)
Hydrogels , Polysaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...