Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Hepatol Commun ; 6(9): 2368-2378, 2022 09.
Article in English | MEDLINE | ID: mdl-35691019

ABSTRACT

Bile salt export pump (Bsep) (Abcb11)-/- mice are protected from acquired cholestatic injury due to metabolic preconditioning with a hydrophilic bile acid (BA) pool with formation of tetrahydroxylated bile acids (THBAs). We aimed to explore whether loss of Bsep and subsequent elevation of THBA levels may have immunomodulatory effects, thus improving liver injury in the multidrug resistance protein 2 (Mdr2) (Abcb4)-/- mouse. Cholestatic liver injury in Mdr2-/- Bsep-/- double knockout (DKO), Mdr2-/- , Bsep-/- , and wild-type mice was studied for comparison. Mdr2-/- mice were treated with a THBA (3α,6α,7α,12α-Tetrahydroxycholanoic acid). RNA/protein expression of inflammatory/fibrotic markers were investigated. Serum BA-profiling was assessed by ultra-performance liquid chromatography tandem mass spectrometry. Hepatic immune cell profile was quantified by flow cytometric analysis (FACS). In vitro, the THBA effect on chenodeoxycholic acid (CDCA)-induced inflammatory signaling in hepatocyte and cholangiocytes as well as lipopolysaccharide (LPS)/interferon-γ (IFN-γ)-induced macrophage activation was analyzed. In contrast to Mdr2-/- , DKO mice showed no features of sclerosing cholangitis. Sixty-seven percent of serum BAs in DKO mice were polyhydroxylated (mostly THBAs), whereas Mdr2-/- mice did not have these BAs. Compared with Mdr2-/- , DKO animals were protected from hepatic inflammation/fibrosis. THBA feeding in Mdr2-/- mice improved liver injury. FACS analysis in DKO and Mdr2-/- THBA-fed mice showed changes of the hepatic immune cell profile towards an anti-inflammatory pattern. Early growth response 1 (EGR1) protein expression was reduced in DKO and in Mdr2-/- THBA-fed mice compared with Mdr2-/- control mice. In vitro, THBA-reduced CDCA induced EGR1 protein and mRNA expression of inflammatory markers in hepatocytes and cholangiocytes. LPS/IFN-γ-induced macrophage activation was ameliorated by THBA. THBAs repress EGR1-related key pro-inflammatory pathways. Conclusion: THBA and their downstream targets may represent a potential treatment strategy for cholestatic liver diseases.


Subject(s)
Bile Acids and Salts , Cholangitis, Sclerosing , Cholestasis , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Bile Acids and Salts/chemistry , Bile Acids and Salts/pharmacology , Bile Ducts/pathology , Cholangitis, Sclerosing/genetics , Cholestasis/complications , Cholestasis/genetics , Disease Models, Animal , Immunomodulation/drug effects , Interferon-gamma , Lipopolysaccharides/pharmacology , Liver Cirrhosis/genetics , Mice , Mice, Knockout , ATP-Binding Cassette Sub-Family B Member 4
2.
Nutrients ; 13(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34444866

ABSTRACT

BACKGROUND: The gut microbiota and its metabolites are essential for host health and dysbiosis has been involved in several pathologic conditions such as type 2 diabetes (T2D) and cardiovascular disease (CVD). Recent studies have identified that plasma imidazole propionate (ImP), a microbial-produced metabolite, is increased in patients with prediabetes and T2D. More recently, ImP was found to be significantly increased in patients with overt CVD. Here, we aimed to investigate the association between ImP and CVD risk factors: blood pressure, HDL-cholesterol, LDL-cholesterol and insulin-resistance in overweight and obese subjects without T2D or use of any metabolic diseases-related medication. METHODS: Plasma metabolites, including ImP, were determined in 107 male or post-menopausal women with overweight/obesity, but without T2D. Insulin-sensitivity was assessed with the gold standard method: the hyperinsulinemic-euglycemic clamp using the isotope [6,6-2H2] glucose and expressed as glucose rate of disposal (Rd) for peripheral insulin sensitivity and suppression of endogenous glucose production (EGP) for hepatic insulin sensitivity. RESULTS: Partial correlation analysis controlled for BMI and age showed a significant correlation between ImP and diastolic blood pressure (rs = 0.285, p = 0.004) and a borderline significance with systolic blood pressure (rs = 0.187, p = 0.060); however, systolic and diastolic blood pressure did not correlate with ImP precursor histidine (rs = 0.063, p = 0.526 and r = -0.038, p = 0.712, respectively). We did not find a correlation between ImP with LDL-cholesterol or HDL-cholesterol (rs = -0.181, p = 0.064 and rs = 0.060, p = 0.546, respectively). Furthermore, there was no association between plasma ImP concentrations and Rd and EGP suppression. CONCLUSION: In this cohort with overweight/obese subjects without T2D, plasma ImP concentrations were positively correlated with diastolic blood pressure but not with insulin-sensitivity.


Subject(s)
Bacteria/metabolism , Blood Pressure , Gastrointestinal Microbiome , Imidazoles/blood , Obesity/blood , Biomarkers/blood , Female , Humans , Insulin Resistance , Lipids/blood , Male , Middle Aged , Obesity/microbiology , Obesity/physiopathology
3.
Hepatol Commun ; 5(7): 1183-1200, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34278168

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide, primarily because of the massive global increase in obesity. Despite intense research efforts in this field, the factors that govern the initiation and subsequent progression of NAFLD are poorly understood, which hampers the development of diagnostic tools and effective therapies in this area of high unmet medical need. Here we describe a regulator in molecular pathogenesis of NAFLD: STE20-type protein kinase MST4. We found that MST4 expression in human liver biopsies was positively correlated with the key features of NAFLD (i.e., hepatic steatosis, lobular inflammation, and hepatocellular ballooning). Furthermore, the silencing of MST4 attenuated lipid accumulation in human hepatocytes by stimulating ß-oxidation and triacylglycerol secretion, while inhibiting fatty acid influx and lipid synthesis. Conversely, overexpression of MST4 in human hepatocytes exacerbated fat deposition by suppressing mitochondrial fatty acid oxidation and triacylglycerol efflux, while enhancing lipogenesis. In parallel to these reciprocal alterations in lipid storage, we detected substantially decreased or aggravated oxidative/endoplasmic reticulum stress in human hepatocytes with reduced or increased MST4 levels, respectively. Interestingly, MST4 protein was predominantly associated with intracellular lipid droplets in both human and rodent hepatocytes. Conclusion: Together, our results suggest that hepatic lipid droplet-decorating protein MST4 is a critical regulatory node governing susceptibility to NAFLD and warrant future investigations to address the therapeutic potential of MST4 antagonism as a strategy to prevent or mitigate the development and aggravation of this disease.

5.
Nat Commun ; 12(1): 3377, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099716

ABSTRACT

Animal models of human diseases are classically fed purified diets that contain casein as the unique protein source. We show that provision of a mixed protein source mirroring that found in the western diet exacerbates diet-induced obesity and insulin resistance by potentiating hepatic mTORC1/S6K1 signaling as compared to casein alone. These effects involve alterations in gut microbiota as shown by fecal microbiota transplantation studies. The detrimental impact of the mixed protein source is also linked with early changes in microbial production of branched-chain fatty acids (BCFA) and elevated plasma and hepatic acylcarnitines, indicative of aberrant mitochondrial fatty acid oxidation. We further show that the BCFA, isobutyric and isovaleric acid, increase glucose production and activate mTORC1/S6K1 in hepatocytes. Our findings demonstrate that alteration of dietary protein source exerts a rapid and robust impact on gut microbiota and BCFA with significant consequences for the development of obesity and insulin resistance.


Subject(s)
Dietary Proteins/adverse effects , Fatty Acids/metabolism , Gastrointestinal Microbiome/physiology , Insulin Resistance , Obesity/etiology , Animal Feed/adverse effects , Animals , Cell Line, Tumor , Diet, High-Fat/adverse effects , Diet, Western/adverse effects , Dietary Sucrose/adverse effects , Disease Models, Animal , Fecal Microbiota Transplantation , Germ-Free Life , Gluconeogenesis , Hepatocytes , Humans , Liver/metabolism , Liver/pathology , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Obesity/metabolism , Obesity/pathology , Rats , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction
6.
Cancer Res ; 81(17): 4581-4593, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34158378

ABSTRACT

The HIV-protease inhibitor nelfinavir has shown broad anticancer activity in various preclinical and clinical contexts. In patients with advanced, proteasome inhibitor (PI)-refractory multiple myeloma, nelfinavir-based therapy resulted in 65% partial response or better, suggesting that this may be a highly active chemotherapeutic option in this setting. The broad anticancer mechanism of action of nelfinavir implies that it interferes with fundamental aspects of cancer cell biology. We combined proteome-wide affinity-purification of nelfinavir-interacting proteins with genome-wide CRISPR/Cas9-based screening to identify protein partners that interact with nelfinavir in an activity-dependent manner alongside candidate genetic contributors affecting nelfinavir cytotoxicity. Nelfinavir had multiple activity-specific binding partners embedded in lipid bilayers of mitochondria and the endoplasmic reticulum. Nelfinavir affected the fluidity and composition of lipid-rich membranes, disrupted mitochondrial respiration, blocked vesicular transport, and affected the function of membrane-embedded drug efflux transporter ABCB1, triggering the integrated stress response. Sensitivity to nelfinavir was dependent on ADIPOR2, which maintains membrane fluidity by promoting fatty acid desaturation and incorporation into phospholipids. Supplementation with fatty acids prevented the nelfinavir-induced effect on mitochondrial metabolism, drug-efflux transporters, and stress-response activation. Conversely, depletion of fatty acids/cholesterol pools by the FDA-approved drug ezetimibe showed a synergistic anticancer activity with nelfinavir in vitro. These results identify the modification of lipid-rich membranes by nelfinavir as a novel mechanism of action to achieve broad anticancer activity, which may be suitable for the treatment of PI-refractory multiple myeloma. SIGNIFICANCE: Nelfinavir induces lipid bilayer stress in cellular organelles that disrupts mitochondrial respiration and transmembrane protein transport, resulting in broad anticancer activity via metabolic rewiring and activation of the unfolded protein response.


Subject(s)
HIV Protease Inhibitors/pharmacology , Membrane Lipids , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Nelfinavir/pharmacology , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Agents/pharmacology , CRISPR-Cas Systems , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Genome , Glucose/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Lipidomics , Lipids/chemistry , Phospholipids/chemistry , Phosphorylation , Receptors, Adiponectin/metabolism , Signal Transduction
7.
FASEB J ; 35(5): e21567, 2021 05.
Article in English | MEDLINE | ID: mdl-33891332

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is emerging as a leading cause of chronic liver disease worldwide. Despite intensive nonclinical and clinical research in this field, no specific pharmacological therapy is currently approved to treat NAFLD, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies have identified STE20-type kinase MST3, which localizes to intracellular lipid droplets, as a critical regulator of ectopic fat accumulation in human hepatocytes. Here, we explored whether treatment with Mst3-targeting antisense oligonucleotides (ASOs) can promote hepatic lipid clearance and mitigate NAFLD progression in mice in the context of obesity. We found that administration of Mst3-targeting ASOs in mice effectively ameliorated the full spectrum of high-fat diet-induced NAFLD including liver steatosis, inflammation, fibrosis, and hepatocellular damage. Mechanistically, Mst3 ASOs suppressed lipogenic gene expression, as well as acetyl-CoA carboxylase (ACC) protein abundance, and substantially reduced lipotoxicity-mediated oxidative and endoplasmic reticulum stress in the livers of obese mice. Furthermore, we found that MST3 protein levels correlated positively with the severity of NAFLD in human liver biopsies. In summary, this study provides the first in vivo evidence that antagonizing MST3 signaling is sufficient to mitigate NAFLD progression in conditions of excess dietary fuels and warrants future investigations to assess whether MST3 inhibitors may provide a new strategy for the treatment of patients with NAFLD.


Subject(s)
Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/complications , Oligonucleotides, Antisense/genetics , Oxidative Stress , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Lipogenesis , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Protein Serine-Threonine Kinases/genetics , Signal Transduction
9.
Acta Cardiol ; 76(5): 544-552, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33334254

ABSTRACT

BACKGROUND: Histopathological changes in calcific aortic stenosis (CAS) resemble changes in coronary atherosclerosis. Concerning recent evidence on dietary and gut microbiota-related metabolites representing players in atherosclerosis, we aimed to investigate the link between dietary and gut microbiota-derived metabolites and CAS. METHODS: We consecutively recruited eligible subjects with moderate-severe CAS (n = 60), aortic sclerosis (ASc) (n = 49) and age and gender-matched control subjects (n = 48) in May 2016-December 2016. Plasma dietary and gut microbiota-related metabolite levels, namely choline, betaine, and trimethylamine N-oxide (TMAO), were measured using ultra-performance liquid chromatography-tandem mass spectroscopy method. Histopathological examinations were performed in patients that underwent aortic valve surgery. RESULTS: Prevalence of traditional cardiovascular risk factors or co-morbidities did not differ among groups (all p > 0.05). CAS patients had higher plasma choline levels compared to both control (p < 0.001) and ASc (p = 0.006). Plasma betaine and TMAO levels were similar (both p > 0.05). Compared to the lowest quartile choline levels (<11.15 µM), patients with the highest quartile choline levels (≥14.98 µM) had higher aortic valvular (p < 0.001) and mitral annular (p = 0.013) calcification scores. Plasma choline levels were independently associated with aortic peak flow velocity (B ± SE:0.165 ± 0.060, p = 0.009). Choline levels were elevated in subjects who had aortic valves with denser lymphocyte infiltration (p < 0.001), neovascularization (p = 0.011), osseous metaplasia (p = 0.004), more severe tissue remodelling (p = 0.002) and calcification (p = 0.002). CONCLUSION: We found a significant association between choline levels and CAS presence and severity depicted on imaging modalities and histopathological examinations. Our study may open new horizons for prevention of CAS.


Subject(s)
Aortic Valve Stenosis , Gastrointestinal Microbiome , Aortic Valve/diagnostic imaging , Betaine , Choline , Humans
10.
Atheroscler Plus ; 44: 18-24, 2021 Oct.
Article in English | MEDLINE | ID: mdl-36644669

ABSTRACT

Background and aims: Cholesterol efflux capacity is a functional property of high-density lipoproteins (HDL) reflecting the efficiency of the atheroprotective reverse cholesterol transport process in humans. Its relationship with calcific aortic valve stenosis (CAVS) has not been fully assessed yet. Methods: We evaluated HDL-CEC in a patient population with varying degrees of aortic valvular calcific disease, assessed using echocardiography and cardiac computed tomography. Measurement of biomarkers that reflect osteogenic and tissue remodeling, along with dietary and gut microbiota-derived metabolites were performed. Results: Patients with moderate-severe CAVS had significantly lower HDL-CEC compared to both control and aortic sclerosis subjects (mean: 6.09%, 7.32% and 7.26%, respectively). HDL-CEC displayed negative correlations with peak aortic jet velocity and aortic valve calcium score, indexes of CAVS severity (ρ = -0.298, p = 0.002 and ρ = -0.358, p = 0.005, respectively). In multivariable regression model, HDL-CEC had independent association with aortic valve calcium score (B: -0.053, SE: 0.014, p < 0.001), GFR (B: -0.034, SE: 0.012, p = 0.007), as well as with levels of total cholesterol (B: 0.018, SE: 0.005, p = 0.002). Conclusion: These results indicate an impairment of HDL-CEC in moderate-severe CAVS and may contribute to identify potential novel targets for CAVS management.

11.
JCI Insight ; 5(24)2020 12 17.
Article in English | MEDLINE | ID: mdl-33170807

ABSTRACT

Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase 25 (STK25) as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Furthermore, we find that STK25 silencing in human kidney cells protects against lipid deposition, as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.


Subject(s)
Diabetic Nephropathies/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Diabetes Mellitus/metabolism , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/prevention & control , Disease Models, Animal , Fatty Liver/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kidney/metabolism , Kidney/pathology , Lipid Metabolism/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protective Agents/metabolism , Protein Serine-Threonine Kinases/genetics
12.
JCI Insight ; 5(24)2020 12 17.
Article in English | MEDLINE | ID: mdl-33170809

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. The transmembrane 6 superfamily member 2 (TM6SF2) E167K genetic variant associates with NAFLD and with reduced plasma triglyceride levels in humans. However, the molecular mechanisms underlying these associations remain unclear. We hypothesized that TM6SF2 E167K affects hepatic very low-density lipoprotein (VLDL) secretion and studied the kinetics of apolipoprotein B100 (apoB100) and triglyceride metabolism in VLDL in homozygous subjects. In 10 homozygote TM6SF2 E167K carriers and 10 matched controls, we employed stable-isotope tracer and compartmental modeling techniques to determine apoB100 and triglyceride kinetics in the 2 major VLDL subfractions: large triglyceride-rich VLDL1 and smaller, less triglyceride-rich VLDL2. VLDL1-apoB100 production was markedly reduced in homozygote TM6SF2 E167K carriers compared with controls. Likewise, VLDL1-triglyceride production was 35% lower in the TM6SF2 E167K carriers. In contrast, the direct production rates for VLDL2-apoB100 and triglyceride were not different between carriers and controls. In conclusion, the TM6SF2 E167K genetic variant was linked to a specific reduction in hepatic secretion of large triglyceride-rich VLDL1. The impaired secretion of VLDL1 explains the reduced plasma triglyceride concentration and provides a basis for understanding the lower risk of cardiovascular disease associated with the TM6SF2 E167K genetic variant.


Subject(s)
Lipoproteins, VLDL/metabolism , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Apolipoprotein B-100/metabolism , Female , Genetic Predisposition to Disease , Humans , Lipase/metabolism , Lipid Metabolism/genetics , Lipids/genetics , Lipoproteins, LDL/genetics , Lipoproteins, LDL/metabolism , Lipoproteins, VLDL/genetics , Liver/metabolism , Liver/pathology , Male , Membrane Proteins/metabolism , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism , Polymorphism, Single Nucleotide/genetics , Triglycerides/metabolism
13.
Int J Cardiol ; 320: 106-111, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32738258

ABSTRACT

BACKGROUND: Type 2 diabetes is a major health problem in the world, and is strongly associated with impaired cardiac function and increased mortality. The causal relationship between type 2 diabetes and impaired cardiac function is still incompletely understood but changes in the cardiac lipid metabolism are believed to be a contributing factor. The objective of this study was to determine the lipid profile in human myocardial biopsies collected in vivo from patients with type 2 diabetes and compare to non-diabetic controls. METHOD: We conducted full lipidomics analyses, using mass spectrometry, of 85 right atrial biopsies obtained from diabetic and non-diabetic patients undergoing elective cardiac surgery. The patients were characterized clinically and serum was analyzed for lipids and biochemical markers. RESULTS: The groups did not differ in BMI and in circulating triglycerides. We demonstrate that type 2 diabetes is associated with alterations in the cardiac lipidome. Interestingly, the absolute amount of lipids is not altered in the diabetic myocardium. However, triglycerides with longer fatty acyl chains are more abundant and there is a higher degree of unsaturated fatty acid chains in triglycerides in diabetic myocardium. CONCLUSIONS: Our study reveals that type 2 diabetes is a relatively strong determinant of the human cardiac lipidome (compared to other clinical variables). Although the total lipid content in the diabetic myocardium is not increased, the lipid composition is markedly affected.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/metabolism , Heart , Humans , Lipid Metabolism , Myocardium/metabolism , Triglycerides/metabolism
14.
PLoS Genet ; 16(8): e1008975, 2020 08.
Article in English | MEDLINE | ID: mdl-32750056

ABSTRACT

The C. elegans proteins PAQR-2 (a homolog of the human seven-transmembrane domain AdipoR1 and AdipoR2 proteins) and IGLR-2 (a homolog of the mammalian LRIG proteins characterized by a single transmembrane domain and the presence of immunoglobulin domains and leucine-rich repeats in their extracellular portion) form a complex that protects against plasma membrane rigidification by promoting the expression of fatty acid desaturases and the incorporation of polyunsaturated fatty acids into phospholipids, hence increasing membrane fluidity. In the present study, we leveraged a novel gain-of-function allele of PAQR-1, a PAQR-2 paralog, to carry out structure-function studies. We found that the transmembrane domains of PAQR-2 are responsible for its functional requirement for IGLR-2, that PAQR-1 does not require IGLR-2 but acts via the same pathway as PAQR-2, and that the divergent N-terminal cytoplasmic domains of the PAQR-1 and PAQR-2 proteins serve a regulatory function and may regulate access to the catalytic site of these proteins. We also show that overexpression of human AdipoR1 or AdipoR2 alone is sufficient to confer increased palmitic acid resistance in HEK293 cells, and thus act in a manner analogous to the PAQR-1 gain-of-function allele.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Membrane Proteins/genetics , Receptors, Adiponectin/genetics , Alleles , Animals , Caenorhabditis elegans/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Gain of Function Mutation/genetics , HEK293 Cells , Humans , Membrane Fluidity/genetics , Phenotype , Phospholipids/genetics , Phospholipids/metabolism
15.
Mol Nutr Food Res ; 64(16): e2000541, 2020 08.
Article in English | MEDLINE | ID: mdl-32579784

ABSTRACT

SCOPE: Cholesterol homeostasis is crucial for brain functioning. Unhealthy nutrition can influence cerebral physiology, but the effect of western diets on brain cholesterol homeostasis, particularly at middle age, is unknown. Given the link between brain cholesterol alteration and beta amyloid production, the aim is to evaluate whether a diet rich in fat and fructose affects the protein network implicated in cholesterol synthesis and shuttling between glial cells and neurons, as well as crucial markers of beta amyloid metabolism. METHODS AND RESULTS: Middle aged rats are fed a high fat-high fructose (HFF) or a control diet for 4 weeks. Inflammatory markers and cholesterol levels significantly increase in hippocampus of HFF rats. A higher activation of 3-hydroxy 3-methylglutaryl coenzyme-A reductase, coupled with lower levels of apolipoprotein E, LXR-beta, and lipoproteins receptors is measured in hippocampus from HFF rats. The alteration of critical players of cholesterol homeostasis is associated with increased level of amyloid precursor protein, presenilin 1, and nicastrin, and decreased level of insulin degrading enzyme. CONCLUSIONS: Overall these data show that a western diet is associated with perturbation of cholesterol homeostasis in middle aged rats, mostly in hippocampus. This might trigger molecular events involved in the onset of neurodegenerative diseases.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Cholesterol/metabolism , Diet, Western/adverse effects , Age Factors , Amyloid Precursor Protein Secretases/metabolism , Animals , Apolipoproteins E/metabolism , Blood-Brain Barrier/physiology , Brain/physiopathology , Cholesterol 24-Hydroxylase/metabolism , Fructose/adverse effects , Homeostasis , Hydroxymethylglutaryl CoA Reductases/metabolism , Liver X Receptors/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Membrane Glycoproteins/metabolism , Rats, Sprague-Dawley , Receptors, LDL/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism
16.
Mol Syst Biol ; 16(4): e9495, 2020 04.
Article in English | MEDLINE | ID: mdl-32337855

ABSTRACT

The prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase dramatically, and there is no approved medication for its treatment. Recently, we predicted the underlying molecular mechanisms involved in the progression of NAFLD using network analysis and identified metabolic cofactors that might be beneficial as supplements to decrease human liver fat. Here, we first assessed the tolerability of the combined metabolic cofactors including l-serine, N-acetyl-l-cysteine (NAC), nicotinamide riboside (NR), and l-carnitine by performing a 7-day rat toxicology study. Second, we performed a human calibration study by supplementing combined metabolic cofactors and a control study to study the kinetics of these metabolites in the plasma of healthy subjects with and without supplementation. We measured clinical parameters and observed no immediate side effects. Next, we generated plasma metabolomics and inflammatory protein markers data to reveal the acute changes associated with the supplementation of the metabolic cofactors. We also integrated metabolomics data using personalized genome-scale metabolic modeling and observed that such supplementation significantly affects the global human lipid, amino acid, and antioxidant metabolism. Finally, we predicted blood concentrations of these compounds during daily long-term supplementation by generating an ordinary differential equation model and liver concentrations of serine by generating a pharmacokinetic model and finally adjusted the doses of individual metabolic cofactors for future human clinical trials.


Subject(s)
Acetylcysteine/administration & dosage , Carnitine/administration & dosage , Metabolomics/methods , Niacinamide/analogs & derivatives , Serine/administration & dosage , Acetylcysteine/blood , Adult , Animals , Carnitine/blood , Dietary Supplements , Drug Therapy, Combination , Healthy Volunteers , Humans , Male , Models, Animal , Niacinamide/administration & dosage , Niacinamide/blood , Non-alcoholic Fatty Liver Disease/diet therapy , Precision Medicine , Pyridinium Compounds , Rats , Serine/blood
17.
Nat Commun ; 11(1): 1891, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312974

ABSTRACT

Hepatic steatosis is associated with poor cardiometabolic health, with de novo lipogenesis (DNL) contributing to hepatic steatosis and subsequent insulin resistance. Hepatic saturated fatty acids (SFA) may be a marker of DNL and are suggested to be most detrimental in contributing to insulin resistance. Here, we show in a cross-sectional study design (ClinicalTrials.gov ID: NCT03211299) that we are able to distinguish the fractions of hepatic SFA, mono- and polyunsaturated fatty acids in healthy and metabolically compromised volunteers using proton magnetic resonance spectroscopy (1H-MRS). DNL is positively associated with SFA fraction and is elevated in patients with non-alcoholic fatty liver and type 2 diabetes. Intriguingly, SFA fraction shows a strong, negative correlation with hepatic insulin sensitivity. Our results show that the hepatic lipid composition, as determined by our 1H-MRS methodology, is a measure of DNL and suggest that specifically the SFA fraction may hamper hepatic insulin sensitivity.


Subject(s)
Fatty Acids/metabolism , Insulin Resistance/physiology , Lipogenesis/physiology , Liver/metabolism , Adipose Tissue , Adult , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Lipids , Liver/diagnostic imaging , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
18.
Arch Toxicol ; 94(5): 1673-1686, 2020 05.
Article in English | MEDLINE | ID: mdl-32253466

ABSTRACT

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are man-made chemicals that are used for the fabrication of many products with water- and dirt-repellent properties. The toxicological potential of both substances is currently under debate. In a recent Scientific Opinion, the European Food Safety Authority (EFSA) has identified increased serum total cholesterol levels in humans as one major critical effect being associated with exposure to PFOA or PFOS. In animal studies, both substances induced a decrease of serum cholesterol levels, and the underlying molecular mechanism(s) for these opposed effects are unclear so far. In the present study, we examined the impact of PFOA and PFOS on cholesterol homoeostasis in the human HepaRG cell line as a model for human hepatocytes. Cholesterol levels in HepaRG cells were not affected by PFOA or PFOS, but both substances strongly decreased synthesis of a number of bile acids. The expression of numerous genes whose products are involved in synthesis, metabolism and transport of cholesterol and bile acids was strongly affected by PFOA and PFOS at concentrations above 10 µM. Notably, both substances led to a strong decrease of CYP7A1, the key enzyme catalyzing the rate-limiting step in the synthesis of bile acids from cholesterol, both at the protein level and at the level of gene expression. Moreover, both substances led to a dilatation of bile canaliculi that are formed by differentiated HepaRG cells in vitro. Similar morphological changes are known to be induced by cholestatic agents in vivo. Thus, the strong impact of PFOA and PFOS on bile acid synthesis and bile canalicular morphology in our in vitro experiments may allow the notion that both substances have a cholestatic potential that is connected to the observed increased serum cholesterol levels in humans in epidemiological studies.


Subject(s)
Alkanesulfonic Acids/toxicity , Bile Acids and Salts/metabolism , Caprylates/toxicity , Fluorocarbons/toxicity , Animals , Carcinoma, Hepatocellular , Cholesterol , Gene Expression , Hepatocytes , Homeostasis , Humans , Lipid Metabolism/drug effects , Liver Neoplasms
19.
Liver Int ; 40(6): 1366-1377, 2020 06.
Article in English | MEDLINE | ID: mdl-32141703

ABSTRACT

BACKGROUND: Bile acids (BAs) regulate hepatic lipid metabolism and inflammation. Bile salt export pump (BSEP) KO mice are metabolically preconditioned with a hydrophilic BA composition protecting them from cholestasis. We hypothesize that changes in hepatic BA profile and subsequent changes in BA signalling may critically determine the susceptibility to steatohepatitis. METHODS: Wild-type (WT) and BSEP KO mice were challenged with methionine choline-deficient (MCD) diet to induce steatohepatitis. Serum biochemistry, lipid profiling as well as intestinal lipid absorption were assessed. Markers of inflammation, fibrosis, lipid and BA metabolism were analysed. Hepatic and faecal BA profile as well as serum levels of the BA synthesis intermediate 7-hydroxy-4-cholesten-3-one (C4) were also investigated. RESULTS: Bile salt export pump KO MCD-fed mice developed less steatosis but more inflammation than WT mice. Intestinal neutral lipid levels were reduced in BSEP KO mice at baseline and under MCD conditions. Faecal non-esterified fatty acid concentrations at baseline and under MCD diet were markedly elevated in BSEP KO compared to WT mice. Serum liver enzymes and hepatic expression of inflammatory markers were increased in MCD-fed BSEP KO animals. PPARα protein levels were reduced in BSEP KO mice. Accordingly, PPARα downstream targets Fabp1 and Fatp5 were repressed, while NFκB subunits were increased in MCD-fed BSEP KO mice. Farnesoid X receptor (FXR) protein levels were reduced in MCD-fed BSEP KO vs WT mice. Hepatic BA profile revealed elevated levels of TßMCA, exerting FXR antagonistic action, while concentrations of TCA (FXR agonistic function) were reduced. CONCLUSION: Presence of hydroxylated BAs result in increased faecal FA excretion and reduced hepatic lipid accumulation. This aggravates development of MCD diet-induced hepatitis potentially by decreasing FXR and PPARα signalling.


Subject(s)
Fatty Liver , Methionine , ATP Binding Cassette Transporter, Subfamily B, Member 11 , Animals , Bile Acids and Salts , Choline , Diet , Fatty Acid-Binding Proteins , Inflammation , Liver , Mice , Mice, Inbred C57BL , Mice, Knockout
20.
Sci Rep ; 10(1): 3895, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127609

ABSTRACT

Ursodeoxycholic acid (UDCA) treatment can reduce itch and lower endogenous serum bile acids in intrahepatic cholestasis of pregnancy (ICP). We sought to determine how it could influence the gut environment in ICP to alter enterohepatic signalling. The gut microbiota and bile acid content were determined in faeces from 35 pregnant women (14 with uncomplicated pregnancies and 21 with ICP, 17 receiving UDCA). Faecal bile salt hydrolase activity was measured using a precipitation assay. Serum fibroblast growth factor 19 (FGF19) and 7α-hydroxy-4-cholesten-3-one (C4) concentrations were measured following a standardised diet for 21 hours. Women with a high ratio of Bacteroidetes to Firmicutes were more likely to be treated with UDCA (Fisher's exact test p = 0.0178) than those with a lower ratio. Bile salt hydrolase activity was reduced in women with low Bacteroidetes:Firmicutes. Women taking UDCA had higher faecal lithocholic acid (p < 0.0001), with more unconjugated bile acids than women with untreated ICP or uncomplicated pregnancy. UDCA-treatment increased serum FGF19, and reduced C4 (reflecting lower bile acid synthesis). During ICP, UDCA treatment can be associated with enrichment of the gut microbiota with Bacteroidetes. These demonstrate high bile salt hydrolase activity, which deconjugates bile acids enabling secondary modification to FXR agonists, enhancing enterohepatic feedback via FGF19.


Subject(s)
Amidohydrolases/genetics , Bacteroidetes/drug effects , Bacteroidetes/genetics , Cholestasis, Intrahepatic/microbiology , Gene Expression Regulation, Bacterial , Intestines/microbiology , Pregnancy Complications/microbiology , Ursodeoxycholic Acid/pharmacology , Animals , Case-Control Studies , Female , Gastrointestinal Microbiome/drug effects , Humans , Mice , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...