Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Cell Transplant ; 31: 9636897221125685, 2022.
Article in English | MEDLINE | ID: mdl-36124646

ABSTRACT

Olfactory ensheathing cell (OEC) transplantation is emerging as a promising treatment option for injuries of the nervous system. OECs can be obtained relatively easily from nasal biopsies, and exhibit several properties such as secretion of trophic factors, and phagocytosis of debris that facilitate neural regeneration and repair. But a major limitation of OEC-based cell therapies is the poor survival of transplanted cells which subsequently limit their therapeutic efficacy. There is an unmet need for approaches that enable the in vitro production of OECs in a state that will optimize their survival and integration after transplantation into the hostile injury site. Here, we present an overview of the strategies to modulate OECs focusing on oxygen levels, stimulating migratory, phagocytic, and secretory properties, and on bioengineering a suitable environment in vitro.


Subject(s)
Neuroglia , Olfactory Bulb , Cell Transplantation , Cellular Microenvironment , Neuroglia/transplantation , Oxygen
2.
Cells ; 11(15)2022 08 04.
Article in English | MEDLINE | ID: mdl-35954252

ABSTRACT

Glial cell transplantation using olfactory ensheathing cells (OECs) holds a promising approach for treating spinal cord injury (SCI). However, integration of OECs into the hostile acute secondary injury site requires interaction and response to macrophages. Immunomodulation of macrophages to reduce their impact on OECs may improve the functionality of OECs. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), known for their immunomodulatory and neuroprotective functions, have provided improved outcomes in SCI animal models. Thus, VEGF and PDGF modulation of the SCI microenvironment may be beneficial for OEC transplantation. In this in vitro study, the effect of VEGF and PDGF on macrophages in an inflammatory condition was tested. Combined VEGF + PDGF reduced translocation nuclear factor kappa B p65 in macrophages without altering pro-inflammatory cytokines. Further, the ability of OECs to phagocytose myelin debris was assessed using macrophage-conditioned medium. Conditioned medium from macrophages incubated with PDGF and combined VEGF + PDGF in inflammatory conditions promoted phagocytosis by OECs. The growth factor treated conditioned media also modulated the expression of genes associated with nerve repair and myelin expression in OECs. Overall, these results suggest that the use of growth factors together with OEC transplantation may be beneficial in SCI therapy.


Subject(s)
Spinal Cord Injuries , Vascular Endothelial Growth Factor A , Animals , Culture Media, Conditioned/pharmacology , Macrophages , Nerve Regeneration/physiology , Olfactory Bulb , Platelet-Derived Growth Factor/pharmacology , Spinal Cord Injuries/therapy
4.
Front Cell Infect Microbiol ; 12: 793416, 2022.
Article in English | MEDLINE | ID: mdl-35281448

ABSTRACT

Streptococcus agalactiae causes neonatal meningitis and can also infect the adult central nervous system (CNS). S. agalactiae can cross the blood-brain barrier but may also reach the CNS via other paths. Several species of bacteria can directly invade the CNS via the olfactory and trigeminal nerves, which extend between the nasal cavity and brain and injury to the nasal epithelium can increase the risk/severity of infection. Preterm birth is associated with increased risk of S. agalactiae infection and with nasogastric tube feeding. The tubes, also used in adults, can cause nasal injuries and may be contaminated with bacteria, including S. agalactiae. We here investigated whether S. agalactiae could invade the CNS after intranasal inoculation in mice. S. agalactiae rapidly infected the olfactory nerve and brain. Methimazole-mediated model of nasal epithelial injury led to increased bacterial load in these tissues, as well as trigeminal nerve infection. S. agalactiae infected and survived intracellularly in cultured olfactory/trigeminal nerve- and brain-derived glia, resulting in cytokine production, with some differences between glial types. Furthermore, a non-capsulated S. agalactiae was used to understand the role of capsule on glial cells interaction. Interestingly, we found that the S. agalactiae capsule significantly altered cytokine and chemokine responses and affected intracellular survival in trigeminal glia. In summary, this study shows that S. agalactiae can infect the CNS via the nose-to-brain path with increased load after epithelial injury, and that the bacteria can survive in glia.


Subject(s)
Premature Birth , Streptococcus agalactiae , Animals , Central Nervous System/microbiology , Mice , Neuroglia , Trigeminal Nerve/microbiology
5.
Pharmaceutics ; 14(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35213952

ABSTRACT

Injuries to the peripheral nervous system result in devastating consequences with loss of motor and sensory function and lifelong impairments. Current treatments have largely relied on surgical procedures, including nerve autografts to repair damaged nerves. Despite improvements to the surgical procedures over the years, the clinical success of nerve autografts is limited by fundamental issues, such as low functionality and mismatching between the damaged and donor nerves. While peripheral nerves can regenerate to some extent, the resultant outcomes are often disappointing, particularly for serious injuries, and the ongoing loss of function due to poor nerve regeneration is a serious public health problem worldwide. Thus, a successful therapeutic modality to bring functional recovery is urgently needed. With advances in three-dimensional cell culturing, nerve guidance conduits (NGCs) have emerged as a promising strategy for improving functional outcomes. Therefore, they offer a potential therapeutic alternative to nerve autografts. NGCs are tubular biostructures to bridge nerve injury sites via orienting axonal growth in an organized fashion as well as supplying a supportively appropriate microenvironment. Comprehensive NGC creation requires fundamental considerations of various aspects, including structure design, extracellular matrix components and cell composition. With these considerations, the production of an NGC that mimics the endogenous extracellular matrix structure can enhance neuron-NGC interactions and thereby promote regeneration and restoration of function in the target area. The use of electrospun fibrous substrates has a high potential to replicate the native extracellular matrix structure. With recent advances in electrospinning, it is now possible to generate numerous different biomimetic features within the NGCs. This review explores the use of electrospinning for the regeneration of the nervous system and discusses the main requirements, challenges and advances in developing and applying the electrospun NGC in the clinical practice of nerve injuries.

6.
Neural Regen Res ; 17(9): 1893-1897, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35142664

ABSTRACT

The nerves of the peripheral nervous system are not able to effectively regenerate in cases of severe neural injury. This can result in debilitating consequences, including morbidity and lifelong impairments affecting the quality of the patient's life. Recent findings in neural tissue engineering have opened promising avenues to apply fibrous tissue-engineered scaffolds to promote tissue regeneration and functional recovery. These scaffolds, known as neural scaffolds, are able to improve neural regeneration by playing two major roles, namely, by being a carrier for transplanted peripheral nervous system cells or biological cues and by providing structural support to direct growing nerve fibers towards the target area. However, successful implementation of scaffold-based therapeutic approaches calls for an appropriate design of the neural scaffold structure that is capable of up- and down-regulation of neuron-scaffold interactions in the extracellular matrix environment. This review discusses the main challenges that need to be addressed to develop and apply fibrous tissue-engineered scaffolds in clinical practice. It describes some promising solutions that, so far, have shown to promote neural cell adhesion and growth and a potential to repair peripheral nervous system injuries.

7.
Sci Rep ; 12(1): 2759, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177758

ABSTRACT

Chlamydia pneumoniae is a respiratory tract pathogen but can also infect the central nervous system (CNS). Recently, the link between C. pneumoniae CNS infection and late-onset dementia has become increasingly evident. In mice, CNS infection has been shown to occur weeks to months after intranasal inoculation. By isolating live C. pneumoniae from tissues and using immunohistochemistry, we show that C. pneumoniae can infect the olfactory and trigeminal nerves, olfactory bulb and brain within 72 h in mice. C. pneumoniae infection also resulted in dysregulation of key pathways involved in Alzheimer's disease pathogenesis at 7 and 28 days after inoculation. Interestingly, amyloid beta accumulations were also detected adjacent to the C. pneumoniae inclusions in the olfactory system. Furthermore, injury to the nasal epithelium resulted in increased peripheral nerve and olfactory bulb infection, but did not alter general CNS infection. In vitro, C. pneumoniae was able to infect peripheral nerve and CNS glia. In summary, the nerves extending between the nasal cavity and the brain constitute invasion paths by which C. pneumoniae can rapidly invade the CNS likely by surviving in glia and leading to Aß deposition.


Subject(s)
Alzheimer Disease , Chlamydophila Infections , Chlamydophila pneumoniae/metabolism , Olfactory Nerve , Trigeminal Nerve , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/microbiology , Animals , Chlamydophila Infections/complications , Chlamydophila Infections/metabolism , Chlamydophila Infections/microbiology , Female , Mice , Mice, Inbred BALB C , Olfactory Nerve/metabolism , Olfactory Nerve/microbiology , Trigeminal Nerve/metabolism , Trigeminal Nerve/microbiology
8.
Sci Rep ; 12(1): 662, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027585

ABSTRACT

Peripheral glial cell transplantation with Schwann cells (SCs) is a promising approach for treating spinal cord injury (SCI). However, improvements are needed and one avenue to enhance regenerative functional outcomes is to combine growth factors with cell transplantation. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) are neuroprotective, and a combination of these factors has improved outcomes in rat SCI models. Thus, transplantation of SCs combined with VEGF and PDGF may further improve regenerative outcomes. First, however, we must understand how the two factors modulate SCs. In this in vitro study, we show that an inflammatory environment decreased the rate of SC-mediated phagocytosis of myelin debris but the addition of VEGF and PDGF (alone and combined) improved phagocytosis. Cytokine expression by SCs in the inflammatory environment revealed that addition of PDGF led to significantly lower level of pro-inflammatory cytokine, TNF-α, but IL-6 and anti-inflammatory cytokines (TGF-ß and IL-10), remained unaltered. Further, PDGF was able to decrease the expression of myelination associated gene Oct6 in the presence of inflammatory environment. Overall, these results suggest that the use of VEGF and/or PDGF combined with SC transplantation may be beneficial in SCI therapy.


Subject(s)
Inflammation/pathology , Platelet-Derived Growth Factor/pharmacology , Schwann Cells/drug effects , Schwann Cells/physiology , Vascular Endothelial Growth Factor A/pharmacology , Animals , Cells, Cultured , Gene Expression/drug effects , Inflammation/genetics , Inflammation/metabolism , Inflammation Mediators/metabolism , Myelin Sheath/metabolism , Nerve Regeneration/genetics , Neuroprotective Agents , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Phagocytosis/drug effects , Phagocytosis/physiology , Rats , Schwann Cells/transplantation , Spinal Cord Injuries/therapy , Tumor Necrosis Factor-alpha/metabolism
9.
J Spinal Cord Med ; 45(3): 442-454, 2022 05.
Article in English | MEDLINE | ID: mdl-32970969

ABSTRACT

Context/objective: To identify themes of interest for the production of educational resources for people with spinal cord injury (SCI).Design: A mixed-method study.Setting: Outpatient SCI community in Australia.Participants: Individuals with a SCI, or carers, family & friends of people who live with a SCI (n = 116).Interventions: Not applicable.Outcome measures: Quantify themes of interest perceived within the Australian SCI community as necessary for the development of SCI educational resources.Results: All seven individuals from the focus-group interviews suggested that educational resources on body physiology, secondary complications, injury pathophysiology, and health and wellbeing maintenance would be most pertinent for development. These themes (among others) were further explored and quantitatively evaluated via an online survey which demonstrated that interviewees ranked 'Your injury' as being of highest importance for the production of educational resources. Within each theme, the sub-categories; 'Bowel/bladder' and 'What equipment is covered in the National Disability Insurance Scheme (NDIS)' were ranked as being of highest importance for the production of educational resources.Conclusion: We have identified multiple areas of interest in the design and production of educational resources for individuals with SCI.


Subject(s)
Spinal Cord Injuries , Australia , Humans , Spinal Cord Injuries/complications , Surveys and Questionnaires
10.
Sci Rep ; 11(1): 10722, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021227

ABSTRACT

Staphylococcus aureus infections of the central nervous system are serious and can be fatal. S. aureus is commonly present in the nasal cavity, and after injury to the nasal epithelium it can rapidly invade the brain via the olfactory nerve. The trigeminal nerve constitutes another potential route of brain infection. The glia of these nerves, olfactory ensheathing cells (OECs) and trigeminal nerve Schwann cells (TgSCs), as well as astrocytes populating the glia limitans layer, can phagocytose bacteria. Whilst some glial responses to S. aureus have been studied, the specific responses of different glial types are unknown. Here, we compared how primary mouse OECs, TgSCs, astrocytes and microglia responded to S. aureus. All glial types internalized the bacteria within phagolysosomes, and S. aureus-conjugated BioParticles could be tracked with subtle but significant differences in time-course of phagocytosis between glial types. Live bacteria could be isolated from all glia after 24 h in culture, and microglia, OECs and TgSCs exhibited better protection against intracellular S. aureus survival than astrocytes. All glial types responded to the bacteria by cytokine secretion. Overall, OECs secreted the lowest level of cytokines, suggesting that these cells, despite showing strong capacity for phagocytosis, have immunomodulatory functions that can be relevant for neural repair.


Subject(s)
Central Nervous System/microbiology , Disease Resistance , Host-Pathogen Interactions , Neuroglia/microbiology , Peripheral Nervous System/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Biomarkers , Cells, Cultured , Central Nervous System/immunology , Cytokines/metabolism , Disease Resistance/immunology , Host-Pathogen Interactions/immunology , Microglia , Neuroglia/immunology , Neuroglia/metabolism , Peripheral Nervous System/immunology , Phagocytosis/immunology , Staphylococcal Infections/immunology
11.
Macromol Rapid Commun ; 41(15): e2000295, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32638470

ABSTRACT

A method is reported for making hollow channels within hydrogels decorated with cell-adhesion peptides exclusively at the channel surface. Sacrificial fibers of different diameters are used to introduce channels within poly(ethylene glycol) hydrogels crosslinked with maleimide-thiol chemistry, which are backfilled with a cysteine-containing peptide solution which is conjugated to the lumen with good spatial efficiency. This allows for peptide patterning in only the areas of the hydrogel where they are needed when used as cell-guides, reducing the amount of required peptide 20-fold when compared to bulk functionalization. The power of this approach is highlighted by successfully using these patterned hydrogels without active perfusion to guide fibroblasts and olfactory ensheathing cells-the latter having unique potential in neural repair therapies.


Subject(s)
Cell Adhesion , Cell Culture Techniques/methods , Hydrogels/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Printing, Three-Dimensional , Animals , Cell Proliferation , Cell Survival , Hydrogels/chemical synthesis , Maleimides/chemistry , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Sulfhydryl Compounds/chemistry
12.
Biomed Mater ; 15(5): 055033, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32544887

ABSTRACT

In tissue engineering, cell-adhesion peptides (CAPs) such as the ubiquitous arginine-glycine-aspartic acid (RGD) sequence have allowed the functionalization of synthetic materials to mimic macromolecules of the extracellular matrix (ECM). However, the variety of ECM macromolecules makes it challenging to reproduce all of the native tissue functions with only a limited variety of CAPs. Screening of libraries of CAPs, analogous to high-throughput drug discovery assays, can help to identify new sequences directing cell organization. However, challenges to this approach include the automation of cell seeding in three dimensions and characterization methods. Here, we report a method for robotically generating a library of 16 CAPs to identify a microenvironment capable of directing a chain-like morphology in olfactory ensheathing cells (OECs), a cell type of particular interest for guiding axon growth in spinal cord injury repair. This approach resulted in the identification of one CAP not previously reported to interact with OECs to direct their morphology into structures suitable for potential axon guidance. The same screening approach should be applicable to any range of cell types to discover new CAPs to direct cell fate or function.


Subject(s)
Cell Culture Techniques , Hydrogels/chemistry , Oligopeptides/chemistry , Peptide Library , Polyethylene Glycols/chemistry , Spinal Cord Injuries/therapy , Amino Acid Motifs , Animals , Automation , Axons/physiology , Cell Adhesion , Cell Lineage , Cell Proliferation , Cell Transplantation/methods , Extracellular Matrix/metabolism , Green Fluorescent Proteins/metabolism , Materials Testing , Mice , Microscopy, Fluorescence , Nerve Regeneration/physiology , Neuroglia/metabolism , Peptides/chemistry , Phenotype , Robotics , Smell , Tissue Engineering/methods
13.
Neural Regen Res ; 15(11): 2016-2026, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32394949

ABSTRACT

Transplantation of olfactory ensheathing cells, the glia of the primary olfactory nervous system, has been trialed for spinal cord injury repair with promising but variable outcomes in animals and humans. Olfactory ensheathing cells can be harvested either from the lamina propria beneath the neuroepithelium in the nasal cavity, or from the olfactory bulb in the brain. As these areas contain several other cell types, isolating and purifying olfactory ensheathing cells is a critical part of the process. It is largely unknown how contaminating cells such as fibroblasts, other glial cell types and supporting cells affect olfactory ensheathing cell function post-transplantation; these cells may also cause unwanted side-effects. It is also, however, possible that the presence of some of the contaminant cells can improve outcomes. Here, we reviewed the last decade of olfactory ensheathing cell transplantation studies in rodents, with a focus on olfactory ensheathing cell purity. We analyzed how purification methods and resultant cell purity differed between olfactory mucosa- and olfactory bulb-derived cell preparations. We analyzed how the studies reported on olfactory ensheathing cell purity and which criteria were used to define cells as olfactory ensheathing cells. Finally, we analyzed the correlation between cell purity and transplantation outcomes. We found that olfactory bulb-derived olfactory ensheathing cell preparations are typically purer than mucosa-derived preparations. We concluded that there is an association between high olfactory ensheathing cell purity and favourable outcomes, but the lack of olfactory ensheathing cell-specific markers severely hampers the field.

14.
J Gen Virol ; 101(6): 622-634, 2020 06.
Article in English | MEDLINE | ID: mdl-32375993

ABSTRACT

Zika virus (ZIKV) has recently emerged as an important human pathogen due to the strong evidence that it causes disease of the central nervous system, particularly microcephaly and Guillain-Barré syndrome. The pathogenesis of disease, including mechanisms of neuroinvasion, may include both invasion via the blood-brain barrier and via peripheral (including cranial) nerves. Cellular responses to infection are also poorly understood. This study characterizes the in vitro infection of laboratory-adapted ZIKV African MR766 and two Asian strains of (1) brain endothelial cells (hCMEC/D3 cell line) and (2) olfactory ensheathing cells (OECs) (the neuroglia populating cranial nerve I and the olfactory bulb; both human and mouse OEC lines) in comparison to kidney epithelial cells (Vero cells, in which ZIKV infection is well characterized). Readouts included infection kinetics, intracellular virus localization, viral persistence and cytokine responses. Although not as high as in Vero cells, viral titres exceeded 104 plaque-forming units (p.f.u.) ml-1 in the endothelial/neuroglial cell types, except hOECs. Despite these substantial titres, a relatively small proportion of neuroglial cells were primarily infected. Immunolabelling of infected cells revealed localization of the ZIKV envelope and NS3 proteins in the cytoplasm; NS3 staining overlapped with that of dsRNA replication intermediate and the endoplasmic reticulum (ER). Infected OECs and endothelial cells produced high levels of pro-inflammatory chemokines. Nevertheless, ZIKV was also able to establish persistent infection in hOEC and hCMEC/D3 cells. Taken together, these results provide basic insights into ZIKV infection of endothelial and neuroglial cells and will form the basis for further study of ZIKV disease mechanisms.


Subject(s)
Brain/virology , Endothelial Cells/virology , Neuroglia/virology , Zika Virus Infection/virology , Zika Virus/pathogenicity , Animals , Blood-Brain Barrier/virology , Cell Line , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Humans , Mice , Vero Cells , Virus Replication/genetics
15.
J Neurotrauma ; 37(5): 817-829, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32056492

ABSTRACT

Cell transplantation constitutes an important avenue for development of new treatments for spinal cord injury (SCI). These therapies are aimed at supporting neural repair and/or replacing lost cells at the injury site. To date, various cell types have been trialed, with most studies focusing on different types of stem cells or glial cells. Here, we review commonly used cell transplantation approaches for spinal cord injury (SCI) repair, with focus on transplantation of olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system. OECs are promising candidates for promotion of neural repair given that they support continuous regeneration of the olfactory nerve that occurs throughout life. Further, OECs can be accessed from the nasal mucosa (olfactory neuroepithelium) at the roof of the nasal cavity and can be autologously transplanted. OEC transplantation has been trialed in many animal models of SCI, as well as in human clinical trials. While several studies have been promising, outcomes are variable and the method needs improvement to enhance aspects such as cell survival, integration, and migration. As a case study, we include the approaches used by our team (the Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia) to address the current problems with OEC transplantation and discuss how the therapeutic potential of OEC transplantation can be improved. Our approach includes discovery research to improve our knowledge of OEC biology, identifying natural and synthetic compounds to stimulate the neural repair properties of OECs, and designing three-dimensional cell constructs to create stable and transplantable cell structures.


Subject(s)
Cell Transplantation/methods , Neuroglia/transplantation , Spinal Cord Injuries/therapy , Spinal Cord Regeneration/physiology , Animals , Humans , Nerve Regeneration/physiology , Olfactory Bulb/transplantation
16.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31964742

ABSTRACT

Neisseria meningitidis, a common cause of sepsis and bacterial meningitis, infects the meninges and central nervous system (CNS), primarily via paracellular traversal across the blood-brain barrier (BBB) or blood-cerebrospinal fluid barrier. N. meningitidis is often present asymptomatically in the nasopharynx, and the nerves extending between the nasal cavity and the brain constitute an alternative route by which the meningococci may reach the CNS. To date, the cellular mechanisms involved in nerve infection are not fully understood. Peripheral nerve glial cells are phagocytic and are capable of eliminating microorganisms, but some pathogens may be able to overcome this protection mechanism and instead infect the glia, causing cell death or pathology. Here, we show that N. meningitidis readily infects trigeminal Schwann cells (the glial cells of the trigeminal nerve) in vitro in both two-dimensional and three-dimensional cell cultures. Infection of trigeminal Schwann cells may be one mechanism by which N. meningitidis is able to invade the CNS. Infection of the cells led to multinucleation and the appearance of atypical nuclei, with the presence of horseshoe nuclei and the budding of nuclei increasing over time. Using sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics followed by bioinformatics pathway analysis, we showed that N. meningitidis induced protein alterations in the glia that were associated with altered intercellular signaling, cell-cell interactions, and cellular movement. The analysis also suggested that the alterations in protein levels were consistent with changes occurring in cancer. Thus, infection of the trigeminal nerve by N. meningitidis may have ongoing adverse effects on the biology of Schwann cells, which may lead to pathology.


Subject(s)
Host-Pathogen Interactions , Neisseria meningitidis/growth & development , Neisseria meningitidis/pathogenicity , Schwann Cells/microbiology , Schwann Cells/pathology , Trigeminal Nerve/cytology , Animals , Cells, Cultured , Mice, Transgenic , Proteome/analysis , Proteomics
17.
PLoS Negl Trop Dis ; 14(1): e0008017, 2020 01.
Article in English | MEDLINE | ID: mdl-31978058

ABSTRACT

The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.


Subject(s)
Burkholderia pseudomallei , Melioidosis/microbiology , Olfactory Bulb/microbiology , Olfactory Nerve/microbiology , S100 Calcium Binding Protein beta Subunit/metabolism , Animals , Antithyroid Agents/administration & dosage , Antithyroid Agents/pharmacology , Genes, Reporter , Giant Cells , Humans , Melioidosis/pathology , Methimazole/administration & dosage , Methimazole/pharmacology , Mice , Mice, Transgenic , Respiratory Mucosa/injuries , Respiratory Mucosa/microbiology , S100 Calcium Binding Protein beta Subunit/genetics
18.
Front Cell Infect Microbiol ; 10: 607779, 2020.
Article in English | MEDLINE | ID: mdl-33489937

ABSTRACT

Chlamydia pneumoniae can infect the brain and has been linked to late-onset dementia. Chlamydia muridarum, which infects mice, is often used to model human chlamydial infections. While it has been suggested to be also important for modelling brain infection, nervous system infection by C. muridarum has not been reported in the literature. C. pneumoniae has been shown to infect the olfactory bulb in mice after intranasal inoculation, and has therefore been suggested to invade the brain via the olfactory nerve; however, nerve infection has not been shown to date. Another path by which certain bacteria can reach the brain is via the trigeminal nerve, but it remains unknown whether Chlamydia species can infect this nerve. Other bacteria that can invade the brain via the olfactory and/or trigeminal nerve can do so rapidly, however, whether Chlamydia spp. can reach the brain earlier than one-week post inoculation remains unknown. In the current study, we showed that C. muridarum can within 48 h invade the brain via the olfactory nerve, in addition to infecting the trigeminal nerve. We also cultured the glial cells of the olfactory and trigeminal nerves and showed that C. muridarum readily infected the cells, constituting a possible cellular mechanism explaining how the bacteria can invade the nerves without being eliminated by glial immune functions. Further, we demonstrated that olfactory and trigeminal glia differed in their responses to C. muridarum, with olfactory glia showing less infection and stronger immune response than trigeminal glia.


Subject(s)
Chlamydia Infections , Chlamydia muridarum , Animals , Central Nervous System , Mice , Neuroglia , Olfactory Nerve , Trigeminal Nerve
19.
J Biol Eng ; 13: 80, 2019.
Article in English | MEDLINE | ID: mdl-31673287

ABSTRACT

BACKGROUND: Three dimensional (3D) cell cultures have been an area of increasing interest and relevance across several research fields including drug discovery, developmental biology and stem cell-based therapies. However, handling 3D structures can be difficult. In particular, the replacement of liquid media and reagents in which liquid is removed using pipettes is difficult to perform as the 3D spheroids can be easily aspirated into the pipette tip. RESULTS: We have developed the 3D-tip, a novel tool that facilitates media change and washing procedures of 3D-spheroid cultures. The 3D-tip contains a mesh with 40-µm pores allowing the aspiration of liquids including media, drugs, buffers and reagents, with the mesh acting as a barrier preventing the spheroids being aspirated into the pipette tip. After aspiration of liquids, the spheroids are gently deposited back into the culture vessel. Our results demonstrate that the 3D-tips offer superior handling of 3D-spheroid cultures in comparison to commonly used methods. We showed that the 3D-tips can easily be used on both fixed and unfixed spheroids and on cancer cell, stem cell and glial cell spheroids.In contrast with the 50/50 media exchange method, the 3D-tips allow a complete media change with minimal loss of spheroids and without damaging their morphology. Our results showed that 86.0% of spheroids remained in the chamber after changing the media using the 3D-tips. In contrast, only 45.0% of spheroids remained using the 50/50 media exchange strategy.In comparison with the centrifugation technique, the 3D-tips preserved spheroids whereas centrifugation led to the loss of spheroids and/or the alteration of the size and shape of the 3D cellular structures. We observed that 87.6 and 84.6% of the fixed and unfixed spheroids remained using the 3D-tip, respectively. In contrast, only 66.3% of the fixed spheroids and 36.4% of the unfixed spheroids were left using the centrifugation method. From a time perspective, the 3D-tips dramatically reduce the time taken for replacing media. CONCLUSIONS: This novel pipette tip is suitable for high throughput screening and automation and will revolutionise the techniques used for the production and analysis of 3D spheroids.

20.
Cancer Cell Int ; 19: 260, 2019.
Article in English | MEDLINE | ID: mdl-31632194

ABSTRACT

The glial cells of the primary olfactory nervous system, olfactory ensheathing cells (OECs), are unusual in that they rarely form tumors. Only 11 cases, all of which were benign, have been reported to date. In fact, the existence of OEC tumors has been debated as the tumors closely resemble schwannomas (Schwann cell tumors), and there is no definite method for distinguishing the two tumor types. OEC transplantation is a promising therapeutic approach for nervous system injuries, and the fact that OECs are not prone to tumorigenesis is therefore vital. However, why OECs are so resistant to neoplastic transformation remains unknown. The primary olfactory nervous system is a highly dynamic region which continuously undergoes regeneration and neurogenesis throughout life. OECs have key roles in this process, providing structural and neurotrophic support as well as phagocytosing the axonal debris resulting from turnover of neurons. The olfactory mucosa and underlying tissue is also frequently exposed to infectious agents, and OECs have key innate immune roles preventing microbes from invading the central nervous system. It is possible that the unique biological functions of OECs, as well as the dynamic nature of the primary olfactory nervous system, relate to the low incidence of OEC tumors. Here, we summarize the known case reports of OEC tumors, discuss the difficulties of correctly diagnosing them, and examine the possible reasons for their rare incidence. Understanding why OECs rarely form tumors may open avenues for new strategies to combat tumorigenesis in other regions of the nervous system.

SELECTION OF CITATIONS
SEARCH DETAIL
...