Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
ISME Commun ; 4(1): ycae019, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38500702

ABSTRACT

Soil history has been shown to condition future rhizosphere microbial communities. However, previous experiments have also illustrated that mature, adult plants can "re-write," or mask, different soil histories through host plant-soil community feedbacks. This leaves a knowledge gap concerning how soil history influences bacterial community structure across different growth stages. Thus, here we tested the hypothesis that previously established soil histories will decrease in influencing the structure of Brassica napus bacterial communities over the growing season. We used an on-going agricultural field experiment to establish three different soil histories, plots of monocrop canola (B. napus), or rotations of wheat-canola, or pea-barley-canola. During the following season, we repeatedly sampled the surrounding bulk soil, rhizosphere, and roots of the B. napus hosts at different growth stages-the initial seeding conditions, seedling, rosette, bolting, and flower-from all three soil history plots. We compared composition and diversity of the B. napus soil bacterial communities, as estimated using 16S rRNA gene metabarcoding, to identify any changes associated with soil history and growth stages. We found that soil history remained significant across each growth stage in structuring the bacterial bulk soil and rhizosphere communities, but not the bacterial root communities. This suggests that the host plant's capacity to "re-write" different soil histories may be quite limited as key components that constitute the soil history's identity remain present, such that the previously established soil history continues to impact the bacterial rhizosphere communities, but not the root communities. For agriculture, this highlights how previously established soil histories persist and may have important long-term consequences on future plant-microbe communities, including bacteria.

2.
Microorganisms ; 11(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38138115

ABSTRACT

The bacterial strain WB46 was isolated from the rhizosphere of willow plants (Salix purpurea L.) growing in soil contaminated with petroleum hydrocarbons. The strain was subjected to whole-genome shotgun sequencing using Illumina HiSeq. Its draft genome is 7.15 Mb, with a 69.55% GC content, containing 6387 protein-coding genes and 51 tRNA and 15 rRNA sequences. The quality and reliability of the genome were assessed using CheckM, attaining an estimated genome completeness of 98.75% and an estimated contamination of 1.68%. These results indicate a high-quality genome (>95%) and low contamination (<5%). Many of these genes are responsible for petroleum hydrocarbon degradation, such as alkane 1-monooxygenase (alkB) and naphthalene dioxygenase (ndo). 16S rRNA gene analysis, including in silico DNA-DNA hybridization (DDH) and average nucleotide identity (ANI), showed that strain WB46 belongs to the genus Nocardia, and the most closely related species is Nocardia asteroides. The strain WB46 showed a distance of 63.4% and sequence identity of 88.63%, respectively. These values fall below the threshold levels of 70% and 95%, respectively, suggesting that the strain WB46 is a new species. We propose the name of Nocardia canadensis sp. nov. for this new species. Interestingly, the sequence divergence of the 16S rRNA gene showed that the divergence only occurred in the V2 region. Therefore, the conventional V3-V4, V5-V7, or V8-V9 targeting metabarcoding, among others, would not be able to assess the diversity related to this new species.

3.
ISME Commun ; 3(1): 32, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37076737

ABSTRACT

Crop breeding has traditionally ignored the plant-associated microbial communities. Considering the interactions between plant genotype and associated microbiota is of value since different genotypes of the same crop often harbor distinct microbial communities which can influence the plant phenotype. However, recent studies have reported contrasting results, which led us to hypothesize that the effect of genotype is constrained by growth stages, sampling year and plant compartment. To test this hypothesis, we sampled bulk soil, rhizosphere soil and roots of 10 field-grown wheat genotypes, twice per year, for 4 years. DNA was extracted and regions of the bacterial 16 S rRNA and CPN60 genes and the fungal ITS region were amplified and sequenced. The effect of genotype was highly contingent on the time of sampling and on the plant compartment sampled. Only for a few sampling dates, were the microbial communities significantly different across genotypes. The effect of genotype was most often significant for root microbial communities. The three marker genes used provided a highly coherent picture of the effect of genotype. Taken together, our results confirm that microbial communities in the plant environment strongly vary across compartments, growth stages, and years, and that this can mask the effect of genotype.

4.
ISME Commun ; 3(1): 30, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37061589

ABSTRACT

Crops associate with microorganisms that help their resistance to biotic stress. However, it is not clear how the different partners of this association react during exposure to stress. This knowledge is needed to target the right partners when trying to adapt crops to climate change. Here, we grew wheat in the field under rainout shelters that let through 100%, 75%, 50% and 25% of the precipitation. At the peak of the growing season, we sampled plant roots and rhizosphere, and extracted and sequenced their RNA. We compared the 100% and the 25% treatments using differential abundance analysis. In the roots, most of the differentially abundant (DA) transcripts belonged to the fungi, and most were more abundant in the 25% precipitation treatment. About 10% of the DA transcripts belonged to the plant and most were less abundant in the 25% precipitation treatment. In the rhizosphere, most of the DA transcripts belonged to the bacteria and were generally more abundant in the 25% precipitation treatment. Taken together, our results show that the transcriptomic response of the wheat holobiont to decreasing precipitation levels is stronger for the fungal and bacterial partners than for the plant.

5.
Appl Environ Microbiol ; 89(1): e0131422, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36629416

ABSTRACT

Oomycetes are critically important in soil microbial communities, especially for agriculture, where they are responsible for major declines in yields. Unfortunately, oomycetes are vastly understudied compared to bacteria and fungi. As such, our understanding of how oomycete biodiversity and community structure vary through time in the soil remains poor. Soil history established by previous crops is one factor known to structure other soil microbes, but this has not been investigated for its influence on oomycetes. In this study, we established three different soil histories in field trials; the following year, these plots were planted with five different Brassicaceae crops. We hypothesized that the previously established soil histories would structure different oomycete communities, regardless of their current Brassicaceae crop host, in both the roots and rhizosphere. We used a nested internal transcribed spacer amplicon strategy incorporated with MiSeq metabarcoding, where the sequencing data was used to infer amplicon sequence variants of the oomycetes present in each sample. This allowed us to determine the impact of different soil histories on the structure and biodiversity of the oomycete root and rhizosphere communities from the five different Brassicaceae crops. We found that each soil history structured distinct oomycete rhizosphere communities, regardless of different Brassicaceae crop hosts, while soil chemistry structured the oomycete communities more during a dry year. Interestingly, soil history appeared specific to oomycetes but was less influential for bacterial communities previously identified from the same samples. These results advance our understanding of how different agricultural practices and inputs can alter edaphic factors to impact future oomycete communities. Examining how different soil histories endure and impact oomycete biodiversity will help clarify how these important communities may be assembled in agricultural soils. IMPORTANCE Oomycetes cause global plant diseases that result in substantial losses, yet they are highly understudied compared to other microbes, like fungi and bacteria. We wanted to investigate how past soil events, like changing crops in rotation, would impact subsequent oomycete communities. We planted different oilseed crops in three different soil histories and found that each soil history structured a distinct oomycete community regardless of which new oilseed crop was planted, e.g., oomycete communities from last year's lentil plots were still detected the following year regardless of which new oilseed crops we planted. This study demonstrated how different agricultural practices can impact future microbial communities differently. Our results also highlight the need for continued monitoring of oomycete biodiversity and quantification.


Subject(s)
Oomycetes , Soil , Soil/chemistry , Oomycetes/genetics , Agriculture/methods , Fungi/genetics , Crops, Agricultural/microbiology , Rhizosphere , Crop Production , Soil Microbiology
6.
Front Microbiol ; 13: 815890, 2022.
Article in English | MEDLINE | ID: mdl-35756012

ABSTRACT

The North American Great Plains cover a large area of the Nearctic ecozone, and an important part of this biome is semiarid. The sustainable intensification of agriculture that is necessary to produce food for an ever-increasing world population requires knowledge of the taxonomic and functional structure of the soil microbial community. In this study, we investigated the influence of soil depth on the composition and functions of the microbial communities hosted in agricultural soils of a semiarid agroecosystem, using metagenomic profiling, and compared them to changes in soil chemical and physical properties. Shotgun sequencing was used to determine the composition and functions of the soil microbial community of 45 soil samples from three soil depths (0-15 cm, 15-30 cm, and 30-60 cm) under different agricultural land use types (native prairie, seeded prairie, and cropland) in southwest Saskatchewan. Analysis of community composition revealed the declining abundance of phyla Verrucomicrobia, Bacteroidetes, Chlorophyta, Bacillariophyta, and Acidobacteria with soil depth, whereas the abundance of phyla Ascomycota, Nitrospirae, Planctomycetes, and Cyanobacteria increased with soil depth. Soil functional genes related to nucleosides and nucleotides, phosphorus (P) metabolism, cell division and cell cycle, amino acids and derivatives, membrane transport, and fatty acids were particularly abundant at 30-60 cm. In contrast, functional genes related to DNA and RNA metabolism, metabolism of nitrogen, sulfur and carbohydrates, and stress response were more abundant in the top soil depth. The RDA analysis of functional genes and soil physico-chemical properties revealed a positive correlation between phages and soil organic P concentrations. In the rooting zone of this semiarid agroecosystem, soil microbes express variable structural patterns of taxonomic and functional diversity at different soil depths. This study shows that the soil microbial community is structured by soil depth and physicochemical properties, with the middle soil depth being an intermediate transition zone with a higher taxonomic diversity. Our results suggest the co-existence of various microbial phyla adapted to upper and lower soil depths in an intermediate-depth transition zone.

7.
Environ Microbiol ; 24(8): 3529-3548, 2022 08.
Article in English | MEDLINE | ID: mdl-35590462

ABSTRACT

Soil history operates through time to influence the structure and biodiversity of soil bacterial communities. Examining how different soil histories endure will help clarify the rules of bacterial community assembly. In this study, we established three different soil histories in field trials; the following year these plots were planted with five different Brassicaceae species. We hypothesized that the previously established soil histories would continue to structure the subsequent Brassicaceae bacterial root and rhizosphere communities. We used a MiSeq 16S rRNA metabarcoding strategy to determine the impact of different soil histories on the structure and biodiversity of the bacterial root and rhizosphere communities from the five different Brassicaceae host plants. We found that the Brassicaceae hosts were consistently significant factors in structuring the bacterial communities. Four host plants (Sinapis alba, Brassica napus, B. juncea, B. carinata) formed similar bacterial communities, regardless of different soil histories. Camelina sativa host plants structured phylogenetically distinct bacterial communities compared to the other hosts, particularly in their roots. Soil history established the previous year was only a significant factor for bacterial community structure when the feedback of the Brassicaceae host plants was weakened, potentially due to limited soil moisture during a dry year. Understanding how soil history is involved in the structure and biodiversity of bacterial communities through time is a limitation in microbial ecology and is required for employing microbiome technologies in improving agricultural systems.


Subject(s)
Brassica napus , Soil , Bacteria/genetics , Droughts , Feedback , Plant Roots/microbiology , Plants/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil/chemistry , Soil Microbiology
8.
Front Microbiol ; 13: 863702, 2022.
Article in English | MEDLINE | ID: mdl-35422791

ABSTRACT

The use of plant growth-promoting rhizobacteria (PGPR) as a bioremediation enhancer in plant-assisted phytoremediation requires several steps, consisting of the screening, selection, and characterization of isolates. A subset of 50 bacterial isolates representing a wide phylogenetic range were selected from 438 morphologically different bacteria that were originally isolated from a petroleum hydrocarbon (PHC)-polluted site of a former petrochemical plant. Selected candidate bacteria were screened using six conventional plant growth-promoting (PGP) traits, complemented with the genetic characterization of genes involved in alkane degradation, as well as other pertinent functions. Finally, the bacterial isolates were subjected to plant growth promotion tests using a gnotobiotic approach under normal and stressed conditions. Our results indicated that 35 bacterial isolates (70%) possessed at least four PGP traits. Twenty-nine isolates (58%) were able to utilize n-hexadecane as a sole carbon source, whereas 43 isolates (86%) were able to utilize diesel as the sole carbon source. The presence of catabolic genes related to hydrocarbon degradation was assessed using endpoint PCR, with the alkane monooxygenase (alkB) gene found in 34 isolates, the cytochrome P450 hydroxylase (CYP153) gene found in 24 isolates, and the naphthalene dioxygenase (nah1) gene found to be present in 33 isolates. Thirty-six strains (72%) promoted canola root elongation in the growth pouch assay. After several rounds of screening, seven bacterial candidates (individually or combined in a consortium) were tested for canola root and shoot growth promotion in substrates amended by different concentrations of n-hexadecane (0%, 1%, 2%, and 3%) under gnotobiotic conditions. Our results showed that Nocardia sp. (WB46), Pseudomonas plecoglossicida (ET27), Stenotrophomonas pavanii (EB31), and Gordonia amicalis (WT12) significantly increased the root length of canola grown in 3% n-hexadecane compared with the control treatment, whereas Nocardia sp. (WB46) and Bacillus megaterium (WT10) significantly increased shoot length compared to control treatment at the same concentration of n-hexadecane. The consortium had a significant enhancement effect on root length compared to all isolates inoculated individually or to the control. This study demonstrates that the combination of PGPR traits and the PHC degradation potential of bacteria can result in an enhanced beneficial effect in phytoremediation management, which could lead to the development of innovative bacterial inoculants for plants to remediate PHC-contaminated soils.

9.
Front Plant Sci ; 13: 828145, 2022.
Article in English | MEDLINE | ID: mdl-35283923

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that improve the nutrition and health of their host. Most, but not all the crops form a symbiosis with AMF. It is the case for canola (Brassica napus), an important crop in the Canadian Prairies that is known to not form this association. From 2008 to 2018, an experiment was replicated at three locations of the Canadian Prairies and it was used to assess the impact of canola on the community of AMF naturally occurring in three cropping systems, canola monoculture, or canola in two different rotation systems (2-years, canola-wheat and 3-years, barley-pea-canola). We sampled canola rhizosphere and bulk soils to: (i) determine diversity and community structure of AMF, we expected that canola will negatively impact AMF communities in function of its frequency in crop rotations and (ii) wanted to assess how these AMF communities interact with other fungi and bacteria. We detected 49 AMF amplicon sequence variants (ASVs) in canola rhizosphere and bulk soils, confirming the persistence of a diversified AMF community in canola-planted soil, even after 10 years of canola monoculture, which was unexpected considering that canola is among non-mycorrhizal plants. Network analysis revealed a broad range of potential interactions between canola-associated AMF and some fungal and bacterial taxa. We report for the first time that two AMF, Funneliformis mosseae and Rhizophagus iranicus, shared their bacterial cohort almost entirely in bulk soil. Our results suggest the existence of non-species-specific AMF-bacteria or AMF-fungi relationships that could benefit AMF in absence of host plants. The persistence of an AMF community in canola rhizosphere and bulk soils brings a new light on AMF ecology and leads to new perspectives for further studies about AMF and soil microbes interactions and AMF subsistence without mycotrophic host plants.

10.
Microb Ecol ; 84(4): 1166-1181, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34727198

ABSTRACT

The subterranean microbiota of plants is of great importance for plant growth and health, as root-associated microbes can perform crucial ecological functions. As the microbial environment of roots is extremely diverse, identifying keystone microorganisms in plant roots, rhizosphere, and bulk soil is a necessary step towards understanding the network of influence within the microbial community associated with roots and enhancing its beneficial elements. To target these hot spots of microbial interaction, we used inter-kingdom network analysis on the canola growth phase of a long-term cropping system diversification experiment conducted at four locations in the Canadian Prairies. Our aims were to verify whether bacterial and fungal communities of canola roots, rhizosphere, and bulk soil are related and influenced by diversification of the crop rotation system; to determine whether there are common or specific core fungi and bacteria in the roots, rhizosphere, and bulk soil under canola grown in different environments and with different levels of cropping system diversification; and to identify hub taxa at the inter-kingdom level that could play an important ecological role in the microbiota of canola. Our results showed that fungi were influenced by crop diversification, which was not the case on bacteria. We found no core microbiota in canola roots but identified three core fungi in the rhizosphere, one core mycobiota in the bulk soil, and one core bacterium shared by the rhizosphere and bulk soil. We identified two bacterial and one fungal hub taxa in the inter-kingdom networks of the canola rhizosphere, and one bacterial and two fungal hub taxa in the bulk soil. Among these inter-kingdom hub taxa, Bradyrhizobium sp. and Mortierella sp. are particularly influential on the microbial community and the plant. To our knowledge, this is the first inter-kingdom network analysis utilized to identify hot spots of interaction in canola microbial communities.


Subject(s)
Bradyrhizobium , Brassica napus , Microbiota , Soil , Soil Microbiology , Fungi , Plant Roots/microbiology , Canada , Rhizosphere , Bacteria , Plants
11.
Plants (Basel) ; 10(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34685796

ABSTRACT

Phytoremediation, a method of phytomanagement using the plant holobiont to clean up polluted soils, is particularly effective for degrading organic pollutants. However, the respective contributions of host plants and their associated microbiota within the holobiont to the efficiency of phytoremediation is poorly understood. The identification of plant-associated bacteria capable of efficiently utilizing these compounds as a carbon source while stimulating plant-growth is a keystone for phytomanagement engineering. In this study, we sampled the rhizosphere and the surrounding bulk soil of Salixpurpurea and Eleocharis obusta from the site of a former petrochemical plant in Varennes, QC, Canada. Our objectives were to: (i) isolate and identify indigenous bacteria inhabiting these biotopes; (ii) assess the ability of isolated bacteria to utilize alkanes and polycyclic aromatic hydrocarbons (PAHS) as the sole carbon source, and (iii) determine the plant growth-promoting (PGP) potential of the isolates using five key traits. A total of 438 morphologically different bacterial isolates were obtained, purified, preserved and identified through PCR and 16S rRNA gene sequencing. Identified isolates represent 62 genera. Approximately, 32% of bacterial isolates were able to utilize all five different hydrocarbons compounds. Additionally, 5% of tested isolates belonging to genera Pseudomonas, Acinetobacter, Serratia, Klebsiella, Microbacterium, Bacillus and Stenotrophomonas possessed all five of the tested PGP functional traits. This culture collection of diverse, petroleum-hydrocarbon degrading bacteria, with multiple PGP traits, represents a valuable resource for future use in environmental bio- and phyto-technology applications.

12.
FEMS Microbiol Ecol ; 97(6)2021 06 04.
Article in English | MEDLINE | ID: mdl-34014265

ABSTRACT

It is thought that modern wheat genotypes have lost their capacity to associate with soil microbes that would help them acquire nutrients from the soil. To test this hypothesis, ten ancestral and modern wheat genotypes were seeded in a field experiment under low fertilization conditions. The rhizosphere soil was collected, its DNA extracted and submitted to shotgun metagenomic sequencing. In contrast to our hypothesis, there was no significant difference in the global rhizosphere metagenomes of the different genotypes, and this held true when focusing the analyses on specific taxonomic or functional categories of genes. Some genes were significantly more abundant in the rhizosphere of one genotype or another, but they comprised only a small portion of the total genes identified and did not affect the global rhizosphere metagenomes. Our study shows for the first time that the rhizosphere metagenome of wheat is stable across a wide variety of genotypes when growing under nutrient poor conditions.


Subject(s)
Microbiota , Rhizosphere , Fertilizers , Genotype , Metagenome , Soil , Soil Microbiology , Triticum
13.
Front Microbiol ; 11: 1587, 2020.
Article in English | MEDLINE | ID: mdl-32849330

ABSTRACT

The rhizosphere hosts a complex web of prokaryotes interacting with one another that may modulate crucial functions related to plant growth and health. Identifying the key factors structuring the prokaryotic community of the plant rhizosphere is a necessary step toward the enhancement of plant production and crop yield with beneficial associative microorganisms. We used a long-term field experiment conducted at three locations in the Canadian prairies to verify that: (1) the level of cropping system diversity influences the α- and ß-diversity of the prokaryotic community of canola (Brassica napus) rhizosphere; (2) the canola rhizosphere community has a stable prokaryotic core; and (3) some highly connected taxa of this community fit the description of hub-taxa. We sampled the rhizosphere of canola grown in monoculture, in a 2-phase rotation (canola-wheat), in a 3-phase rotation (pea-barley-canola), and in a highly diversified 6-phase rotation, five and eight years after cropping system establishment. We detected only one core bacterial Amplicon Sequence Variant (ASV) in the prokaryotic component of the microbiota of canola rhizosphere, a hub taxon identified as cf. Pseudarthrobacter sp. This ASV was also the only hub taxon found in the networks of interactions present in both years and at all three sites. We highlight a cohort of bacteria and archaea that were always connected with the core taxon in the network analyses.

14.
Environ Microbiol ; 22(11): 4545-4556, 2020 11.
Article in English | MEDLINE | ID: mdl-32656968

ABSTRACT

Agricultural production is dependent on inputs of nitrogen (N) whose cycle relies on soil and crop microbiomes. Crop diversification has increased productivity; however, its impact on the expression of microbial genes involved in N-cycling pathways remains unknown. Here, we assessed N-cycling gene expression patterns in the root and rhizosphere microbiomes of five oilseed crops as influenced by three 2-year crop rotations. The first phase consisted of fallow, lentil or wheat, and the second phase consisted of one of five oilseed crops. Expression of bacterial amoA, nirK and nirS genes showed that the microbiome of Ethiopian mustard had the lowest and that of camelina the highest potential for N loss. A preceding rotation phase of lentil significantly increased the expression of nifH gene by 23% compared with wheat and improved nxrA gene expression by 51% with chemical fallow in the following oilseed crops respectively. Lentil substantially increased biological N2 fixation and reduced denitrification in the following oilseed crops. Our results also revealed that most N-cycling gene transcripts are more abundant in the microbiomes associated with roots than with the rhizosphere. The outcome of our investigation brings a new level of understanding on how crop diversification and rotation sequences are related to N-cycling in annual cropping systems.


Subject(s)
Camellia/metabolism , Crops, Agricultural/microbiology , Lens Plant/metabolism , Mustard Plant/metabolism , Nitrogen Cycle/physiology , Triticum/metabolism , Agriculture/methods , Bacteria/genetics , Camellia/microbiology , Crop Production/methods , Lens Plant/microbiology , Microbiota/physiology , Mustard Plant/microbiology , Nitrogen/metabolism , Nitrogen Cycle/genetics , Plant Roots/microbiology , Rhizosphere , Soil , Soil Microbiology , Triticum/microbiology
15.
Microorganisms ; 8(6)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526923

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) have been shown to play an important role in increasing plant fitness in harsh conditions. Therefore, AMF are currently considered to be effective partners in phytoremediation. However, AMF communities in high levels of petroleum pollution are still poorly studied. We investigated the community structures of AMF in roots and rhizospheric soils of two plant species, Eleocharis elliptica and Populus tremuloides, growing spontaneously in high petroleum-contaminated sedimentation basins of a former petrochemical plant (91,000 µg/Kg of C10-C50 was recorded in a basin which is 26-fold higher than the threshold of polluted soil in Quebec, Canada). We used a PCR cloning, and sequencing approach, targeting the 18S rRNA gene to identify AMF taxa. The high concentration of petroleum-contamination largely influenced the AMF diversity, which resulted in less than five AMF operational taxonomical units (OTUs) per individual plant at all sites. The OTUs detected belong mainly to the Glomerales, with some from the Diversisporales and Paraglomerales, which were previously reported in high concentrations of metal contamination. Interestingly, we found a strong phylogenetic signal in OTU associations with host plant species identity, biotopes (roots or soils), and contamination concentrations (lowest, intermediate and highest). The genus Rhizophagus was the most dominant taxon representing 74.4% of all sequences analyzed in this study and showed clear association with the highest contamination level. The clear association of Rhizophagus with high contamination levels suggests the importance of the genus for the use of AMF in bioremediation, as well as for the survey of key AMF genes related to petroleum hydrocarbon resistance. By favoring plant fitness and mediating its soil microbial interactions, Rhizophagus spp. could enhance petroleum hydrocarbon pollutant degradation by both plants and their microbiota in contaminated sites.

16.
Microorganisms ; 8(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326329

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) have been shown to reduce plant stress and improve their health and growth, making them important components of the plant-root associated microbiome, especially in stressful conditions such as petroleum hydrocarbons (PHs) contaminated environments. Purposely manipulating the root-associated AMF assemblages in order to improve plant health and modulate their interaction with the rhizosphere microbes could lead to increased agricultural crop yields and phytoremediation performance by the host plant and its root-associated microbiota. In this study, we tested whether repeated inoculations with a Proteobacteria consortium influenced plant productivity and the AMF assemblages associated with the root and rhizosphere of four plant species growing either in non-contaminated natural soil or in sediments contaminated with petroleum hydrocarbons. A mesocosm experiment was performed in a randomized complete block design in four blocks with two factors: (1) substrate contamination (contaminated or not contaminated), and (2) inoculation (or not) with a bacterial consortium composed of ten isolates of Proteobacteria. Plants were grown in a greenhouse over four months, after which the effect of treatments on plant biomass and petroleum hydrocarbon concentrations in the substrate were determined. MiSeq amplicon sequencing, targeting the 18S rRNA gene, was used to assess AMF community structures in the roots and rhizosphere of plants growing in both contaminated and non-contaminated substrates. We also investigated the contribution of plant identity and biotope (plant roots and rhizospheric soil) in shaping the associated AMF assemblages. Our results showed that while inoculation caused a significant shift in AMF communities, the substrate contamination had a much stronger influence on their structure, followed by the biotope and plant identity to a lesser extent. Moreover, inoculation significantly increased plant biomass production and was associated with a decreased petroleum hydrocarbons dissipation in the contaminated soil. The outcome of this study provides knowledge on the factors influencing the diversity and community structure of AMF associated with indigenous plants following repeated inoculation of a bacterial consortium. It highlights the dominance of soil chemical properties, such as petroleum hydrocarbon presence, over biotic factors and inputs, such as plant species and microbial inoculations, in determining the plant-associated arbuscular mycorrhizal fungi communities.

17.
Microb Ecol ; 80(4): 762-777, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31897569

ABSTRACT

Rhizosphere microbes influence one another, forming extremely complex webs of interactions that may determine plant success. Identifying the key factors that structure the fungal microbiome of the plant rhizosphere is a necessary step in optimizing plant production. In a long-term field experiment conducted at three locations in the Canadian prairies, we tested the following hypotheses: (1) diversification of cropping systems influences the fungal microbiome of the canola (Brassica napus) rhizosphere; (2) the canola rhizosphere has a core fungal microbiome, i.e., a set of fungi always associated with canola; and (3) some taxa within the rhizosphere microbiome of canola are highly interrelated and fit the description of hub taxa. Our results show that crop diversification has a significant effect on the structure of the rhizosphere fungal community but not on fungal diversity. We also discovered and described a canola core microbiome made up of one zero-radius operational taxonomic unit (ZOTU), cf. Olpidium brassicae, and an eco-microbiome found only in 2013 consisting of 47 ZOTUs. Using network analysis, we identified four hub taxa in 2013: ZOTU14 (Acremonium sp.), ZOTU28 (Sordariomycetes sp.), ZOTU45 (Mortierella sp.) and ZOTU179 (cf. Ganoderma applanatum), and one hub taxon, ZOTU17 (cf. Mortierella gamsii) in 2016. None of these most interacting taxa belonged to the core microbiome or eco-microbiome for each year of sampling. This temporal variability puts into question the idea of a plant core fungal microbiome and its stability. Our results provide a basis for the development of ecological engineering strategies for the improvement of canola production systems in Canada.


Subject(s)
Brassica napus/microbiology , Crop Production , Fungi/isolation & purification , Mycobiome/physiology , Rhizosphere , Alberta , Crop Production/methods , Saskatchewan , Seasons
18.
Front Microbiol ; 10: 2144, 2019.
Article in English | MEDLINE | ID: mdl-31572347

ABSTRACT

Manipulating the plant-root microbiota has the potential to reduce plant stress and promote their growth and production in harsh conditions. Community composition and activity of plant-roots microbiota can be either beneficial or deleterious to plant health. Shifting this equilibrium could then strongly affect plant productivity in anthropized areas. In this study, we tested whether repeated bioaugmentation with Proteobacteria influenced plant productivity and the microbial communities associated with the rhizosphere of four plant species growing in sediments contaminated with petroleum hydrocarbons (PHCs). A mesocosm experiment was performed in randomized block design with two factors: (1) presence or absence of four plants species collected from a sedimentation basin of a former petrochemical plant, and (2) bioaugmentation or not with a bacterial consortium composed of ten isolates of Proteobacteria. Plants were grown in a greenhouse over 4 months. MiSeq amplicon sequencing, targeting the bacterial 16S rRNA gene and the fungal ITS, was used to assess microbial community structures of sediments from planted or unplanted microcosms. Our results showed that while bioaugmentation caused a significant shift in microbial communities, presence of plant and their species identity had a stronger influence on the structure of the microbiome in PHCs contaminated sediments. The outcome of this study provides knowledge on the diversity and behavior of rhizosphere microbes associated with indigenous plants following repeated bioaugmentation, underlining the importance of plant selection in order to facilitate their efficient management, in order to accelerate processes of land reclamation.

19.
BMC Genomics ; 20(1): 457, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31170914

ABSTRACT

BACKGROUND: In hyperspecialized parasites, the ability to grow on a particular host relies on specific virulence factors called effectors. These excreted proteins are involved in the molecular mechanisms of parasitism and distinguish virulent pathogens from non-virulent related species. The potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida are major plant-parasitic nematodes developing on numerous solanaceous species including potato. Their close relatives, G. tabacum and G. mexicana are stimulated by potato root diffusate but unable to establish a feeding site on this plant host. RESULTS: RNA sequencing was used to characterize transcriptomic differences among these four Globodera species and to identify genes associated with host specificity. We identified seven transcripts that were unique to PCN species, including a protein involved in ubiquitination. We also found 545 genes that were differentially expressed between PCN and non-PCN species, including 78 genes coding for effector proteins, which represent more than a 6-fold enrichment compared to the whole transcriptome. Gene polymorphism analysis identified 359 homozygous non-synonymous variants showing a strong evidence for selection in PCN species. CONCLUSIONS: Overall, we demonstrated that the determinant of host specificity resides in the regulation of essential effector gene expression that could be under the control of a single or of very few regulatory genes. Such genes are therefore promising targets for the development of novel and more sustainable resistances against potato cyst nematodes.


Subject(s)
Solanum tuberosum/parasitology , Tylenchoidea/genetics , Animals , Gene Expression Profiling , Genetic Variation , Host Specificity/genetics , Polymerase Chain Reaction , Sequence Analysis, RNA , Tylenchoidea/metabolism , Tylenchoidea/pathogenicity
20.
Fungal Biol ; 122(9): 837-846, 2018 09.
Article in English | MEDLINE | ID: mdl-30115317

ABSTRACT

The classification and physiology of the zoosporic plant-pathogen Olpidium brassicae and its relationships with the closely-related species are often confusing. This review focuses on these species and intends to differentiate them based on the literatures published since the discovery and establishment of the species by Woronin in 1878 under the name of Chytridium brassicae to current molecular era. The goal of this review is to help researchers better understand the taxonomy, the host range, and the potential role in plant health of O. brassicae-related species. To reach the goal, we reviewed the rationales behind the creation or reduction in synonymy of the different names for O. brassicae and its allied species in order to elucidate the evolution of the species concept on them based on the traditional morphological studies. Furthermore, the studies by molecular biology methods improve our knowledge and perspectives on O. brassicae and its host specificity. In particular, we clarify the differences between O. brassicae and Olpidium virulentus, and propose potential new research avenues. We therefore hope that this review will give a better perspective on Olpidium spp. and their potential role in the root microbiome of plants in natural environments and in agricultural settings.


Subject(s)
Chytridiomycota/classification , Chytridiomycota/pathogenicity , Host Specificity , Plant Diseases/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...