Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787341

ABSTRACT

Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. While venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e. OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance.

2.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37961297

ABSTRACT

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here, we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain of function mutation p.E1099K, resulting in growth suppression, apoptosis, and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 in a covalent and reversible manner to recruit the SCF FBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCF FBXO22 . Overall, we present a highly potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a novel FBXO22-dependent TPD strategy.

3.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873284

ABSTRACT

We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence mechanisms that dictate venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e., OXPHOS) status with relatively high steady-state levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake sharply reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in the biology of LSCs and provide a therapeutic avenue for clinical management of venetoclax resistance.

4.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37697435

ABSTRACT

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Animals , Female , Humans , Mice , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , Breast Neoplasms/genetics , DNA Damage , DNA-Binding Proteins/metabolism , Exoribonucleases/metabolism , Genomic Instability , Neoplasm Recurrence, Local , R-Loop Structures , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Haematologica ; 108(9): 2343-2357, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37021547

ABSTRACT

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.


Subject(s)
Leukemia, Myeloid, Acute , Sirtuin 3 , Humans , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Proteomics , Neoplastic Stem Cells/metabolism , Lipid Metabolism , Homeostasis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Fatty Acids/metabolism , Fatty Acids/pharmacology , Fatty Acids/therapeutic use , Cholesterol
6.
J Lipid Res ; 63(9): 100256, 2022 09.
Article in English | MEDLINE | ID: mdl-35921881

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Acylation , Acyltransferases/metabolism , Alkynes , Azetidines , Coenzyme A/metabolism , Cysteine , Fatty Acid Synthase, Type I/metabolism , Humans , Myristates , Nitriles , Palmitates , Pyrazoles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Stearates
7.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269585

ABSTRACT

Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.


Subject(s)
Aminophenols/pharmacology , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Protein Interaction Maps/drug effects , Quinolones/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Chlorides/metabolism , Drug Combinations , HEK293 Cells , Humans , Mass Spectrometry , Mutation , Vesicular Transport Proteins/metabolism
8.
Leukemia ; 36(5): 1283-1295, 2022 05.
Article in English | MEDLINE | ID: mdl-35152270

ABSTRACT

AML cells are arranged in a hierarchy with stem/progenitor cells giving rise to more differentiated bulk cells. Despite the importance of stem/progenitors in the pathogenesis of AML, the determinants of the AML stem/progenitor state are not fully understood. Through a comparison of genes that are significant for growth and viability of AML cells by way of a CRISPR screen, with genes that are differentially expressed in leukemia stem cells (LSC), we identified importin 11 (IPO11) as a novel target in AML. Importin 11 (IPO11) is a member of the importin ß family of proteins that mediate transport of proteins across the nuclear membrane. In AML, knockdown of IPO11 decreased growth, reduced engraftment potential of LSC, and induced differentiation. Mechanistically, we identified the transcription factors BZW1 and BZW2 as novel cargo of IPO11. We further show that BZW1/2 mediate a transcriptional signature that promotes stemness and survival of LSC. Thus, we demonstrate for the first time how specific cytoplasmic-nuclear regulation supports stem-like transcriptional signature in relapsed AML.


Subject(s)
Leukemia, Myeloid, Acute , beta Karyopherins , Active Transport, Cell Nucleus , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Stem Cells/metabolism , beta Karyopherins/genetics , beta Karyopherins/metabolism
9.
Autophagy ; 18(5): 1174-1186, 2022 05.
Article in English | MEDLINE | ID: mdl-34524948

ABSTRACT

ABBREVIATIONS: BioID: proximity-dependent biotin identification; GO: gene ontology; OSBPL: oxysterol binding protein like; VAPA: VAMP associated protein A; VAPB: VAMP associated protein B and C.


Subject(s)
Autophagy , Macroautophagy , Humans
10.
Autophagy ; 18(4): 829-840, 2022 04.
Article in English | MEDLINE | ID: mdl-34432599

ABSTRACT

Depolarized mitochondria can be degraded via mitophagy, a selective form of autophagy. The RAB GTPase RAB7A was recently shown to play a key role in this process. RAB7A regulates late endocytic trafficking under normal growth conditions but is translocated to the mitochondrial surface following depolarization. However, how RAB7A activity is regulated during mitophagy is not understood. Here, using a proximity-dependent biotinylation approach (miniTurbo), we identified C5orf51 as a specific interactor of GDP-locked RAB7A. C5orf51 also interacts with the RAB7A guanine nucleotide exchange factor (GEF) complex members MON1 and CCZ1. In the absence of C5orf51, localization of RAB7A on depolarized mitochondria is compromised and the protein is degraded by the proteasome. Furthermore, depletion of C5orf51 also inhibited ATG9A recruitment to depolarized mitochondria. Together, these results indicate that C5orf51 is a positive regulator of RAB7A in its shuttling between late endosomes and mitochondria to enable mitophagy.Abbreviations: ATG9A: autophagy related 9A; Baf A1: bafilomycin A1; BioID: proximity-dependent biotin identification; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CCZ1: CCZ1 homolog, vacuolar protein trafficking and biogenesis associated; DQ-BSA: dye quenched-bovine serum albumin; FYCO1: FYVE and coiled-coil domain autophagy adaptor 1; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; KO: knockout; LRPPRC: leucine rich pentatricopeptide repeat containing; MG132: carbobenzoxy-Leu-Leu-leucinal; MON1: MON1 homolog, secretory trafficking associated; mtDNA: mitochondrial DNA; PINK1: PTEN induced kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; RMC1: regulator of MON1-CCZ1; TBC1D15: TBC1 domain family member 15; TBC1D17: TBC1 domain family member 17; TOMM20: translocase of outer mitochondrial membrane 20; WDR91: WD repeat domain 91; WT: wild type.


Subject(s)
Autophagy , Mitophagy , Autophagy/physiology , DNA, Mitochondrial , Endosomes/metabolism , Guanine Nucleotide Exchange Factors , Mitophagy/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Nat Commun ; 12(1): 6274, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725361

ABSTRACT

Cancer cells bearing distinct KRAS mutations exhibit variable sensitivity to SHP2 inhibitors (SHP2i). Here we show that cells harboring KRAS Q61H are uniquely resistant to SHP2i, and investigate the underlying mechanisms using biophysics, molecular dynamics, and cell-based approaches. Q61H mutation impairs intrinsic and GAP-mediated GTP hydrolysis, and impedes activation by SOS1, but does not alter tyrosyl phosphorylation. Wild-type and Q61H-mutant KRAS are both phosphorylated by Src on Tyr32 and Tyr64 and dephosphorylated by SHP2, however, SHP2i does not reduce ERK phosphorylation in KRAS Q61H cells. Phosphorylation of wild-type and Gly12-mutant KRAS, which are associated with sensitivity to SHP2i, confers resistance to regulation by GAP and GEF activities and impairs binding to RAF, whereas the near-complete GAP/GEF-resistance of KRAS Q61H remains unaltered, and high-affinity RAF interaction is retained. SHP2 can stimulate KRAS signaling by modulating GEF/GAP activities and dephosphorylating KRAS, processes that fail to regulate signaling of the Q61H mutant.


Subject(s)
Enzyme Inhibitors/pharmacology , Lung Neoplasms/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Guanosine Triphosphate/metabolism , Humans , Lung Neoplasms/enzymology , Mutation, Missense , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , raf Kinases/genetics , raf Kinases/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
12.
Nat Commun ; 12(1): 4707, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349110

ABSTRACT

Salmonella utilizes translocated virulence proteins (termed effectors) to promote host cell invasion. The effector SopD contributes to invasion by promoting scission of the plasma membrane, generating Salmonella-containing vacuoles. SopD is expressed in all Salmonella lineages and plays important roles in animal models of infection, but its host cell targets are unknown. Here we show that SopD can bind to and inhibit the small GTPase Rab10, through a C-terminal GTPase activating protein (GAP) domain. During infection, Rab10 and its effectors MICAL-L1 and EHBP1 are recruited to invasion sites. By inhibiting Rab10, SopD promotes removal of Rab10 and recruitment of Dynamin-2 to drive scission of the plasma membrane. Together, our study uncovers an important role for Rab10 in regulating plasma membrane scission and identifies the mechanism used by a bacterial pathogen to manipulate this function during infection.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Salmonella typhimurium/pathogenicity , rab GTP-Binding Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Dynamin II , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , HEK293 Cells , Humans , Salmonella typhimurium/metabolism , Vacuoles/metabolism , Vacuoles/microbiology , Virulence , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
13.
J Proteome Res ; 20(5): 2187-2194, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33683136

ABSTRACT

On the basis of an analysis of (i) SARS-CoV-2 virions, (ii) SARS-CoV-2-infected VeroE6 cell lysates, and (iii) recombinant SARS-CoV-2 proteins expressed in HEK 293 cells, here we present a comprehensive SARS-CoV-2 peptide spectrum compendium, comprising 1682 high confidence peptide consensus spectra derived from 1170 peptides (of various charge states) spanning 23 virus proteins. This high quality reference set can be used, e.g., for the selection of commonly observed virus peptides for use in targeted proteomics or data-independent acquisition (DIA) approaches. Using this rich resource, we also demonstrate that a spectral matching search approach yields improved performance over the use of standard database search engines alone for the identification of virus peptides in complex biological samples.


Subject(s)
COVID-19 , Peptide Library , HEK293 Cells , Humans , Peptides , SARS-CoV-2 , Tandem Mass Spectrometry
14.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33529165

ABSTRACT

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood. BRCA1 and BRCA2 have also been implicated in the suppression of R-loops, triple-stranded nucleic acid structures composed of a DNA:RNA hybrid and a displaced ssDNA strand. Here, we report that loss of RNF168, an E3 ubiquitin ligase and DNA double-strand break (DSB) responder, remarkably protected Brca1-mutant mice against mammary tumorigenesis. We demonstrate that RNF168 deficiency resulted in accumulation of R-loops in BRCA1/2-mutant breast and ovarian cancer cells, leading to DSBs, senescence, and subsequent cell death. Using interactome assays, we identified RNF168 interaction with DHX9, a helicase involved in the resolution and removal of R-loops. Mechanistically, RNF168 directly ubiquitylated DHX9 to facilitate its recruitment to R-loop-prone genomic loci. Consequently, loss of RNF168 impaired DHX9 recruitment to R-loops, thereby abrogating its ability to resolve R-loops. The data presented in this study highlight a dependence of BRCA1/2-defective tumors on factors that suppress R-loops and reveal a fundamental RNF168-mediated molecular mechanism that governs cancer development and vulnerability.


Subject(s)
BRCA1 Protein/deficiency , BRCA2 Protein/deficiency , DNA, Neoplasm/metabolism , Genomic Instability , Mammary Neoplasms, Animal/metabolism , Ovarian Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , DNA, Neoplasm/genetics , Female , Genetic Loci , Humans , Mammary Neoplasms, Animal/genetics , Mice , Mice, Knockout , Ovarian Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics
15.
Nat Commun ; 11(1): 4673, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938917

ABSTRACT

RAS-MAPK signaling mediates processes critical to normal development including cell proliferation, survival, and differentiation. Germline mutation of RAS-MAPK genes lead to the Noonan-spectrum of syndromes. Here, we present a patient affected by a 6p-interstitial microdeletion with unknown underlying molecular etiology. Examination of 6p-interstitial microdeletion cases reveals shared clinical features consistent with Noonan-spectrum disorders including short stature, facial dysmorphia and cardiovascular abnormalities. We find the RAS-responsive element binding protein-1 (RREB1) is the common deleted gene in multiple 6p-interstitial microdeletion cases. Rreb1 hemizygous mice display orbital hypertelorism and cardiac hypertrophy phenocopying the human syndrome. Rreb1 haploinsufficiency leads to sensitization of MAPK signaling. Rreb1 recruits Sin3a and Kdm1a to control H3K4 methylation at MAPK pathway gene promoters. Haploinsufficiency of SIN3A and mutations in KDM1A cause syndromes similar to RREB1 haploinsufficiency suggesting genetic perturbation of the RREB1-SIN3A-KDM1A complex represents a new category of RASopathy-like syndromes arising through epigenetic reprogramming of MAPK pathway genes.


Subject(s)
DNA-Binding Proteins/genetics , Haploinsufficiency , MAP Kinase Signaling System/genetics , Noonan Syndrome/etiology , Transcription Factors/genetics , ras Proteins/metabolism , Abnormalities, Multiple/genetics , Animals , Chromosome Deletion , Chromosomes, Human, Pair 6 , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/metabolism , Humans , Male , Methylation , Mice, Inbred C57BL , Mice, Knockout , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Transcription Factors/metabolism , ras Proteins/genetics
16.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32891193

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Subject(s)
DNA-Binding Proteins/genetics , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Mutation , Repressor Proteins/genetics , Transcription Factors/genetics , Urinary Tract/metabolism , Urogenital Abnormalities/genetics , Amphibian Proteins/antagonists & inhibitors , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Case-Control Studies , Child , Child, Preschool , DNA-Binding Proteins/metabolism , Family , Female , Forkhead Transcription Factors/metabolism , Heterozygote , Humans , Infant , Larva/genetics , Larva/growth & development , Larva/metabolism , Male , Mice , Mice, Knockout , Morpholinos/genetics , Morpholinos/metabolism , Pedigree , Protein Binding , Repressor Proteins/metabolism , Transcription Factors/metabolism , Urinary Tract/abnormalities , Urogenital Abnormalities/metabolism , Urogenital Abnormalities/pathology , Exome Sequencing , Xenopus
17.
Structure ; 28(11): 1184-1196.e6, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32814032

ABSTRACT

Unc-51-like kinase 4 (ULK4) is a pseudokinase that has been linked to the development of several diseases. Even though sequence motifs required for ATP binding in kinases are lacking, ULK4 still tightly binds ATP and the presence of the co-factor is required for structural stability of ULK4. Here, we present a high-resolution structure of a ULK4-ATPγS complex revealing a highly unusual ATP binding mode in which the lack of the canonical VAIK motif lysine is compensated by K39, located N-terminal to αC. Evolutionary analysis suggests that degradation of active site motifs in metazoan ULK4 has co-occurred with an ULK4-specific activation loop, which stabilizes the C helix. In addition, cellular interaction studies using BioID and biochemical validation data revealed high confidence interactors of the pseudokinase and armadillo repeat domains. Many of the identified ULK4 interaction partners were centrosomal and tubulin-associated proteins and several active kinases suggesting interesting regulatory roles for ULK4.


Subject(s)
Adenosine Diphosphate/chemistry , Adenosine Triphosphate/analogs & derivatives , Autophagy-Related Protein-1 Homolog/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Magnesium/chemistry , Protein Serine-Threonine Kinases/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Arabidopsis/chemistry , Arabidopsis/enzymology , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Binding Sites , Cations, Divalent , Crystallography, X-Ray , Gene Expression , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Magnesium/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Substrate Specificity , Trypanosoma/chemistry , Trypanosoma/enzymology
18.
J Proteome Res ; 19(8): 3554-3561, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32628020

ABSTRACT

Due to their ease of use and high binding affinity, streptavidin-based purification tools have become widely used for isolating biotinylated compounds from complex mixtures. We and others routinely use streptavidin-sepharose matrices to isolate biotinylated polypeptides generated in proximity-dependent biotinylation approaches, such as BioID or APEX. However, we noted sporadic, substantial variation in the quality of BioID experiments performed in the same laboratories over time, using seemingly identical protocols. Identifying the source of this problem, here, we highlight considerable variability in streptavidin contamination derived from different production lots of streptavidin-sepharose beads from the same manufacturer and demonstrate that high levels of streptavidin peptide contamination can have detrimental effects on BioID data. We also describe two simple, rapid approaches to assess the degree of streptavidin "shedding" from individual lots of the sepharose matrix before use to avoid the use of lower quality reagent.


Subject(s)
Biotin , Peptides , Biotinylation , Sepharose , Streptavidin
19.
Protein Sci ; 29(8): 1843-1850, 2020 08.
Article in English | MEDLINE | ID: mdl-32535973

ABSTRACT

von Hippel-Lindau protein (pVHL) is the tumor suppressor responsible for ubiquitylating the hypoxia-inducible factor (HIF) family of transcription factors for degradation under normoxic conditions. There are two major pVHL isoforms with the shorter isoform (pVHL19 ) lacking the acidic domain present in the N-terminus of the longer isoform (pVHL30 ). Although both isoforms can degrade HIF and suppress tumor formation in experimental systems, previous research suggests that pVHL30 can undergo posttranslational modifications (PTM) and interact with unique proteins. Indeed, pVHL30 has long been observed to migrate as two species on a reducing polyacrylamide gel, indicating the presence of an uncharacterized PTM on the slower-migrating pVHL30 without an identifiable biological consequence. Thus, there has been considerable effort to elucidate the exclusive biological activity of pVHL30 , if any, by first defining the unique features of the slower-migrating species. We show here that the migration of pVHL30 , but not pVHL19 , is retarded by 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), an irreversible serine protease inhibitor commonly found in protease inhibitor cocktails.


Subject(s)
Sulfones/chemistry , Von Hippel-Lindau Tumor Suppressor Protein/chemistry , Humans , Isoenzymes/chemistry , Protein Domains
20.
Sci Transl Med ; 12(538)2020 04 08.
Article in English | MEDLINE | ID: mdl-32269163

ABSTRACT

Neurolysin (NLN) is a zinc metallopeptidase whose mitochondrial function is unclear. We found that NLN was overexpressed in almost half of patients with acute myeloid leukemia (AML), and inhibition of NLN was selectively cytotoxic to AML cells and stem cells while sparing normal hematopoietic cells. Mechanistically, NLN interacted with the mitochondrial respiratory chain. Genetic and chemical inhibition of NLN impaired oxidative metabolism and disrupted the formation of respiratory chain supercomplexes (RCS). Furthermore, NLN interacted with the known RCS regulator, LETM1, and inhibition of NLN disrupted LETM1 complex formation. RCS were increased in patients with AML and positively correlated with NLN expression. These findings demonstrate that inhibiting RCS formation selectively targets AML cells and stem cells and highlights the therapeutic potential of pharmacologically targeting NLN in AML.


Subject(s)
Leukemia, Myeloid, Acute , Peptide Hydrolases , Electron Transport , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Metalloendopeptidases , Mitochondria/metabolism , Peptide Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...