Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
BMC Infect Dis ; 23(1): 499, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507666

ABSTRACT

BACKGROUND: Chikungunya is associated with high morbidity and the natural history of symptomatic infection has been divided into three phases (acute, post-acute, and chronic) according to the duration of musculoskeletal symptoms. Although this classification has been designed to help guide therapeutic decisions, it does not encompass the complexity of the clinical expression of the disease and does not assist in the evaluation of the prognosis of severity nor chronic disease. Thus, the current challenge is to identify and diagnose musculoskeletal disorders and to provide the optimal treatment in order to prevent perpetuation or progression to a potentially destructive disease course. METHODS: The study is the first product of the Clinical and Applied Research Network in Chikungunya (REPLICK). This is a prospective, outpatient department-based, multicenter cohort study in Brazil. Four work packages were defined: i. Clinical research; ii) Translational Science - comprising immunology and virology streams; iii) Epidemiology and Economics; iv) Therapeutic Response and clinical trials design. Scheduled appointments on days 21 (D21) ± 7 after enrollment, D90 ± 15, D120 ± 30, D180 ± 30; D360 ± 30; D720 ± 60, and D1080 ± 60 days. On these visits a panel of blood tests are collected in addition to the clinical report forms to obtain data on socio-demographic, medical history, physical examination and questionnaires devoted to the evaluation of musculoskeletal manifestations and overall health are performed. Participants are asked to consent for their specimens to be maintained in a biobank. Aliquots of blood, serum, saliva, PAXgene, and when clinically indicated to be examined, synovial fluid, are stored at -80° C. The study protocol was submitted and approved to the National IRB and local IRB at each study site. DISCUSSION: Standardized and harmonized patient cohorts are needed to provide better estimates of chronic arthralgia development, the clinical spectra of acute and chronic disease and investigation of associated risk factors. This study is the largest evaluation of the long-term sequelae of individuals infected with CHIKV in the Brazilian population focusing on musculoskeletal manifestations, mental health, quality of life, and chronic pain. This information will both define disease burden and costs associated with CHIKV infection, and better inform therapeutic guidelines.


Subject(s)
Chikungunya Fever , Humans , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Chikungunya Fever/therapy , Cohort Studies , Prospective Studies , Quality of Life , Chronic Disease , Multicenter Studies as Topic
2.
J Virol Methods ; 320: 114787, 2023 10.
Article in English | MEDLINE | ID: mdl-37516366

ABSTRACT

Viral infections have been the cause of high mortality rates throughout different periods in history. Over the last two decades, outbreaks caused by zoonotic diseases and transmitted by arboviruses have had a significant impact on human health. The emergence of viral infections in different parts of the world encourages the search for new inputs to fight pathologies of viral origin. Antibodies represent the predominant class of new drugs developed in recent years and approved for the treatment of various human diseases, including cancer, autoimmune and infectious diseases. A promising group of antibodies are single-domain antibodies derived from camelid heavy chain immunoglobulins, or VHHs, are biomolecules with nanometric dimensions and unique pharmaceutical and biophysical properties that can be used in the diagnosis and immunotherapy of viral infections. For viral neutralization to occur, VHHs can act in different stages of the viral cycle, including the actual inhibition of infection, to hindering viral replication or assembly. This review article addresses advances involving the use of VHHs in therapeutic propositions aimed to battle different viruses that affect human health.


Subject(s)
Antiviral Agents , Single-Domain Antibodies , Virus Diseases , Single-Domain Antibodies/therapeutic use , Animals , Camelidae/metabolism , Antiviral Agents/therapeutic use , Molecular Targeted Therapy , Virus Diseases/drug therapy , Virus Diseases/virology , Humans , Viruses/classification
3.
Rev Soc Bras Med Trop ; 55: e0088, 2022.
Article in English | MEDLINE | ID: mdl-35946624

ABSTRACT

BACKGROUND: Coronavirus disease (COVID-19) serology testing evaluates the prevalence of COVID-19 cases. METHODS: A seroepidemiological survey of COVID-19 among healthcare workers was performed (June 2020 to November 2020) in Ribeirão Preto, São Paulo, Brazil. Overall, 10,172 and 2,129 workers participated in the first and second phases, respectively. RESULTS: First phase: 12.7% tested positive for COVID-19 (73.5% females and 35.2% aged 30-39 years), and 29.6% were nursing technicians. Second phase: 12.1% tested positive for COVID-19 (65.5% females and 33.3% aged 40-49 years), and 24.8% were nursing assistants. CONCLUSIONS: In 2020, healthcare workers in Ribeirão Preto had COVID-19 in a similar way.


Subject(s)
COVID-19 , Brazil/epidemiology , COVID-19/epidemiology , Cities , Female , Health Personnel , Humans , Male , Prevalence
4.
Rev. Soc. Bras. Med. Trop ; 55: e0088, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1387541

ABSTRACT

ABSTRACT Background: Coronavirus disease (COVID-19) serology testing evaluates the prevalence of COVID-19 cases. Methods: A seroepidemiological survey of COVID-19 among healthcare workers was performed (June 2020 to November 2020) in Ribeirão Preto, São Paulo, Brazil. Overall, 10,172 and 2,129 workers participated in the first and second phases, respectively. Results: First phase: 12.7% tested positive for COVID-19 (73.5% females and 35.2% aged 30-39 years), and 29.6% were nursing technicians. Second phase: 12.1% tested positive for COVID-19 (65.5% females and 33.3% aged 40-49 years), and 24.8% were nursing assistants. Conclusions: In 2020, healthcare workers in Ribeirão Preto had COVID-19 in a similar way.

5.
Amino Acids ; 53(10): 1635-1648, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34482475

ABSTRACT

The worrisome emergence of pathogens resistant to conventional drugs has stimulated the search for new classes of antimicrobial and antiparasitic agents from natural sources. Antimicrobial peptides (AMPs), acting through mechanisms that do not rely on the interaction with a specific receptor, provide new possibilities for the development of drugs against resistant organisms. This study sought to purify and proteomically characterize the antimicrobial and antiparasitic peptidomes of B. atrox and B. jararacussu snake venoms against Gram-positive (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus-MRSA), Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, and the protozoan parasites Leishmania amazonensis and Plasmodium falciparum (clone W2, resistant to chloroquine). To this end, B. atrox and B. jararacussu venom peptides were purified by combination of 3 kDa cut-off Amicon® ultracentrifugal filters and reverse-phase high-performance liquid chromatography, and then identified by electrospray-ionization Ion-Trap/Time-of-Flight mass spectrometry. Fourteen distinct peptides, with masses ranging from 443.17 to 1383.73 Da and primary structure between 3 and 13 amino acid residues, were sequenced. Among them, 13 contained unique sequences, including 4 novel bradykinin-potentiating-like peptides (BPPs), and a snake venom metalloproteinase tripeptide inhibitor (SVMPi). Although commonly found in Viperidae venoms, except for Bax-12, the BPPs and SVMPi here reported had not been described in B. atrox and B. jararacussu venoms. Among the novel peptides, some exhibited bactericidal activity towards P. aeruginosa and S. aureus, had low hemolytic effect, and were devoid of antiparasitic activity. The identified novel antimicrobial peptides may be relevant in the development of new drugs for the management of multidrug-resistant Gram-negative and Gram-positive bacteria.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Crotalid Venoms/chemistry , Peptides/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Bothrops , Crotalid Venoms/isolation & purification , Hemolytic Agents/chemistry , Hemolytic Agents/pharmacology , Humans , Leishmania/drug effects , Microbial Sensitivity Tests , Peptides/chemistry , Peptides/isolation & purification , Plasmodium falciparum/drug effects , Pseudomonas aeruginosa/drug effects , Spectrometry, Mass, Electrospray Ionization , Staphylococcus aureus/drug effects
6.
Mol Diagn Ther ; 25(4): 439-456, 2021 07.
Article in English | MEDLINE | ID: mdl-34146333

ABSTRACT

The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.


Subject(s)
Camelids, New World/immunology , Early Diagnosis , Single-Domain Antibodies/immunology , Animals , Drug Stability , Humans , Point-of-Care Testing , Sensitivity and Specificity , Single-Domain Antibodies/chemistry
7.
J Biomol Struct Dyn ; 39(3): 1082-1092, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32090677

ABSTRACT

The recent emergence of Zika virus (ZIKV) has affected many countries, with severe clinical manifestations such as fetal microcephaly and Guillain-Barré syndrome. However, even though it is a major public health concern, there is no approved treatment available. Structural knowledge of the main neutralization regions of the envelope (E) protein of ZIKV and its interactions with neutralizing antibodies (nAbs) are crucial for the rational development of subunit vaccines and establishment of antibody-based interventions. In this study we screened from public data hot spot epitopes in conserved regions of ZIKV E protein that are nAbs targets. The result points to a conserved epitope located at domain II of the ZIKV E protein, namely adjacent dimer epitope, which is the ZIKV-117 and Z20 nAbs target. Although these two nAbs have been isolated from different donors, we have demonstrated, from structural and energetic details obtained by molecular dynamics of native and mutants, that hot spots residues of the epitope are the same for these nAbs, thereby indicating that they may share similar binding and neutralization mechanism. This convergence of information between these nAbs is important because both are potential targets for the development of therapies against ZIKV and only Z20 has its sequence and its complex structure with ZIKV E protein determined. Finally, these findings also contribute to existing knowledge, by fine mapping of the epitope/paratope residue pairs that are important for biotechnological development of therapies such as epitope mimetics for subunit vaccines and the rational design for antibody-based interventions against ZIKV. Communicated by Ramaswamy H. Sarma.


Subject(s)
Zika Virus Infection , Zika Virus , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Viral Envelope Proteins
8.
Amino Acids, v. 53, p. 1635–1648, out. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3939

ABSTRACT

The worrisome emergence of pathogens resistant to conventional drugs has stimulated the search for new classes of antimicrobial and antiparasitic agents from natural sources. Antimicrobial peptides (AMPs), acting through mechanisms that do not rely on the interaction with a specific receptor, provide new possibilities for the development of drugs against resistant organisms. This study sought to purify and proteomically characterize the antimicrobial and antiparasitic peptidomes of B. atrox and B. jararacussu snake venoms against Gram-positive (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus—MRSA), Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, and the protozoan parasites Leishmania amazonensis and Plasmodium falciparum (clone W2, resistant to chloroquine). To this end, B. atrox and B. jararacussu venom peptides were purified by combination of 3 kDa cut-off Amicon® ultracentrifugal filters and reverse-phase high-performance liquid chromatography, and then identified by electrospray-ionization Ion-Trap/Time-of-Flight mass spectrometry. Fourteen distinct peptides, with masses ranging from 443.17 to 1383.73 Da and primary structure between 3 and 13 amino acid residues, were sequenced. Among them, 13 contained unique sequences, including 4 novel bradykinin-potentiating-like peptides (BPPs), and a snake venom metalloproteinase tripeptide inhibitor (SVMPi). Although commonly found in Viperidae venoms, except for Bax-12, the BPPs and SVMPi here reported had not been described in B. atrox and B. jararacussu venoms. Among the novel peptides, some exhibited bactericidal activity towards P. aeruginosa and S. aureus, had low hemolytic effect, and were devoid of antiparasitic activity. The identified novel antimicrobial peptides may be relevant in the development of new drugs for the management of multidrug-resistant Gram-negative and Gram-positive bacteria.

9.
Rev Soc Bras Med Trop ; 52: e20180526, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31508780

ABSTRACT

INTRODUCTION: Crotalus envenomations cause serious complications and can be fatal without appropriate treatment. Venom isoforms present and inter/intraspecific variations in the venom composition can result in different symptoms presented by bites by snakes from the same species but from different geographical regions. We comparatively evaluated the local and systemic effects caused by Crotalus durissus terrificus (Cdt), C.d. collilineatus (Cdcolli), and C.d. cascavella (Cdcasc) envenomation. METHODS: Venom chromatography was performed. Proteolytic, phospholipase, and LAAO activities were analyzed. Edema, myotoxicity, hepatotoxicity, nephrotoxicity, and coagulation alterations were evaluated. RESULTS: The venom SDS-PAGE analyses found the presence of convulxin, gyroxin, crotoxin, and crotamine in Cdt and Cdcolli venoms. Crotamine was not present in the Cdcasc venom. Cdt, Cdcollli, and Cdcasc venoms had no proteolytic activity. Only Cdcasc and Cdt venoms had phospholipase activity. LAAO activity was observed in Cdcolli and Cdcasc venoms. Cdcolli and Cdcasc venoms caused 36.7% and 13.3% edema increases, respectively. Cdt venom caused a 10% edema induction compared to those by other venoms. All venoms increased TOTAL-CK, MB-CK, and LDH levels (indicating muscle injury) and ALT, AST, GGT, and ALP levels (markers of liver damage) and were able to induce a neuromuscular blockade. Urea and creatinine levels were also altered in both plasma and urine, indicating kidney damage. Only Cdcolli and Cdcasc venoms increased TAPP and TAP. CONCLUSIONS: Together, these results allow us to draw a distinction between local and systemic effects caused by Crotalus subspecies, highlighting the clinical and biochemical effects produced by their respective venoms.


Subject(s)
Crotalid Venoms/toxicity , Crotalus/classification , Edema/chemically induced , Kidney/drug effects , Liver/drug effects , Alkaline Phosphatase/blood , Alkaline Phosphatase/drug effects , Animals , Creatine Kinase/blood , Creatine Kinase/drug effects , Creatinine/blood , Edema/pathology , Electrophoresis, Polyacrylamide Gel , Kidney/pathology , L-Lactate Dehydrogenase/blood , L-Lactate Dehydrogenase/drug effects , Liver/pathology , Mice , Models, Animal , Transaminases/blood , Transaminases/drug effects , Urea/blood
10.
J Leukoc Biol ; 106(3): 595-605, 2019 09.
Article in English | MEDLINE | ID: mdl-31087703

ABSTRACT

BjcuL is a C-type lectin isolated from Bothrops jararacussu snake venom with specificity for binding ß-d-galactose units. BjcuL is not toxic to human peripheral blood mononuclear cells (PBMCs), but it inhibits PBMC proliferation and stimulates these cells to produce superoxide anions and hydrogen peroxide primarily via lymphocyte stimulation; it does not stimulate the production of nitric oxide and PGE2 . The purpose of this study was to investigate the effect of BjcuL on PBMC activation with a focus on cytokine release modulating PBMC proliferation. The results showed for the first time that BjcuL coupled to FITC interacted with monocytes, B cells, natural killer (NK) cells, and with subpopulations of T cells. These cell-cell interactions can lead to cell activation and inflammatory cytokines release, such as IL-6 and TNF-α, as well as the anti-inflammatory cytokine IL-10. In addition, TNF-α release was attributed to NK cells and monocytes, whereas IL-10 was attributed to TCD4+ and Treg cells when stimulated by BjcuL. The temporal cytokines profile produced by cells when stimulated with this lectin allows us to assert that BjcuL has immunomodulatory activity in this context.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/chemistry , Interleukin-10/metabolism , Killer Cells, Natural/metabolism , Lectins, C-Type/isolation & purification , Monocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adult , Animals , Humans , Leukocytes, Mononuclear/metabolism
11.
Rev. Soc. Bras. Med. Trop ; 52: e20180526, 2019. tab, graf
Article in English | LILACS | ID: biblio-1020439

ABSTRACT

Abstract INTRODUCTION: Crotalus envenomations cause serious complications and can be fatal without appropriate treatment. Venom isoforms present and inter/intraspecific variations in the venom composition can result in different symptoms presented by bites by snakes from the same species but from different geographical regions. We comparatively evaluated the local and systemic effects caused by Crotalus durissus terrificus (Cdt), C.d. collilineatus (Cdcolli), and C.d. cascavella (Cdcasc) envenomation. METHODS: Venom chromatography was performed. Proteolytic, phospholipase, and LAAO activities were analyzed. Edema, myotoxicity, hepatotoxicity, nephrotoxicity, and coagulation alterations were evaluated. RESULTS: The venom SDS-PAGE analyses found the presence of convulxin, gyroxin, crotoxin, and crotamine in Cdt and Cdcolli venoms. Crotamine was not present in the Cdcasc venom. Cdt, Cdcollli, and Cdcasc venoms had no proteolytic activity. Only Cdcasc and Cdt venoms had phospholipase activity. LAAO activity was observed in Cdcolli and Cdcasc venoms. Cdcolli and Cdcasc venoms caused 36.7% and 13.3% edema increases, respectively. Cdt venom caused a 10% edema induction compared to those by other venoms. All venoms increased TOTAL-CK, MB-CK, and LDH levels (indicating muscle injury) and ALT, AST, GGT, and ALP levels (markers of liver damage) and were able to induce a neuromuscular blockade. Urea and creatinine levels were also altered in both plasma and urine, indicating kidney damage. Only Cdcolli and Cdcasc venoms increased TAPP and TAP. CONCLUSIONS: Together, these results allow us to draw a distinction between local and systemic effects caused by Crotalus subspecies, highlighting the clinical and biochemical effects produced by their respective venoms.


Subject(s)
Animals , Crotalus/classification , Crotalid Venoms/toxicity , Edema/chemically induced , Kidney/drug effects , Liver/drug effects , Urea/blood , Creatine Kinase/drug effects , Creatine Kinase/blood , Creatinine/blood , Models, Animal , Edema/pathology , Electrophoresis, Polyacrylamide Gel , Alkaline Phosphatase/drug effects , Alkaline Phosphatase/blood , Transaminases/drug effects , Transaminases/blood , Kidney/pathology , L-Lactate Dehydrogenase/drug effects , L-Lactate Dehydrogenase/blood , Liver/pathology , Mice
12.
Rev Soc Bras Med Trop ; 51(3): 338-346, 2018.
Article in English | MEDLINE | ID: mdl-29972565

ABSTRACT

INTRODUCTION: Brazil has the largest number of snakebite cases in South America, of which the large majority is concentrated in the Midwest and North. METHODS: In this descriptive observational study, we assessed the epidemiological and clinical snakebite cases referred to the Centro de Medicina Tropical de Rondônia from September 2008 to September 2010. RESULTS: We followed up 92 cases from admission until discharge, namely 81 (88%) men and 11 (12%) women, with a mean age of 37 years, and mainly from rural areas (91.3%). The snakebites occurred while performing work activities (63%) during the Amazon rainy season (78.3%). The vast majority of individuals presented from the Porto Velho microregion (84.7%). Approximately 95.6% of the snakebites were caused by snakes of the genus Bothrops, followed by two lachetics and two elapidics cases. Surgery was performed in 10 cases (9 fasciotomies in the lower limb and 1 amputation). No deaths were reported in this study, but 4 cases (4.3%) developed sequelae in the lower limb. CONCLUSIONS: This study can contribute to a better understanding of envenomation in the state of Rondônia and thus can be useful for identifying real conditions that can increase the incidence of snakebites in this region. Moreover, the study results can serve as a basis for improving educational campaigns designed to prevent these types of snakebites, as well as for preserving snakes.


Subject(s)
Snake Bites/epidemiology , Adult , Animals , Antivenins/administration & dosage , Bothrops , Brazil/epidemiology , Disease Notification , Elapidae , Epidemiologic Studies , Female , Humans , Incidence , Male , Middle Aged , Seasons , Severity of Illness Index , Snake Bites/complications , Snake Bites/drug therapy , Young Adult
13.
Rev. Soc. Bras. Med. Trop ; 51(3): 338-346, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-957429

ABSTRACT

Abstract INTRODUCTION Brazil has the largest number of snakebite cases in South America, of which the large majority is concentrated in the Midwest and North. METHODS In this descriptive observational study, we assessed the epidemiological and clinical snakebite cases referred to the Centro de Medicina Tropical de Rondônia from September 2008 to September 2010. RESULTS We followed up 92 cases from admission until discharge, namely 81 (88%) men and 11 (12%) women, with a mean age of 37 years, and mainly from rural areas (91.3%). The snakebites occurred while performing work activities (63%) during the Amazon rainy season (78.3%). The vast majority of individuals presented from the Porto Velho microregion (84.7%). Approximately 95.6% of the snakebites were caused by snakes of the genus Bothrops, followed by two lachetics and two elapidics cases. Surgery was performed in 10 cases (9 fasciotomies in the lower limb and 1 amputation). No deaths were reported in this study, but 4 cases (4.3%) developed sequelae in the lower limb. CONCLUSIONS This study can contribute to a better understanding of envenomation in the state of Rondônia and thus can be useful for identifying real conditions that can increase the incidence of snakebites in this region. Moreover, the study results can serve as a basis for improving educational campaigns designed to prevent these types of snakebites, as well as for preserving snakes.


Subject(s)
Humans , Animals , Male , Female , Adult , Young Adult , Snake Bites/epidemiology , Seasons , Snake Bites/complications , Snake Bites/drug therapy , Severity of Illness Index , Brazil/epidemiology , Antivenins/administration & dosage , Epidemiologic Studies , Incidence , Elapidae , Bothrops , Disease Notification , Middle Aged
14.
Toxicol In Vitro ; 41: 30-41, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28188836

ABSTRACT

BjcuL is a C-type lectin with specificity for the binding of ß-d-galactose units isolated from Bothrops jararacussu venom. It triggers cellular infiltration in post capillary venules, increases edema and vascular permeability in murine models, contributes to in vitro neutrophil activation and modulates macrophage functional activation towards an M1 state. The purpose of this study was to investigate the effect of BjcuL on human peripheral blood mononuclear cells (PBMCs) activation with a focus on PBMCs proliferation and inflammatory mediators release. Results showed that BjcuL is not toxic to PBMCs, that BjcuL inhibits PBMCs proliferation and that it stimulates PBMCs to produce superoxide anion and hydrogen peroxide, primarily via lymphocyte stimulation, but does not stimulate the production of nitric oxide and PGE2. These results demonstrate that BjcuL has an immunomodulatory effect on PBMCs. Further studies are needed to confirm the immunomodulatory effect of BjcuL, to elucidate the molecular mechanisms of action responsible for its effects and to determine its potential application as an immunopharmacological and biotechnological tool.


Subject(s)
Crotalid Venoms/toxicity , Immunologic Factors/toxicity , Leukocytes, Mononuclear/drug effects , Cell Survival/drug effects , Cells, Cultured , Cyclooxygenase 1/genetics , Cyclooxygenase 2/genetics , Dinoprostone/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Gene Expression/drug effects , Hemagglutinins/metabolism , Humans , Lectins, C-Type , Leukocytes, Mononuclear/metabolism , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism
15.
Toxins (Basel) ; 8(3)2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26938560

ABSTRACT

It has been reported that Paulistine in the venom of the wasp Polybia paulista co-exists as two different forms: an oxidized form presenting a compact structure due to the presence of a disulfide bridge, which causes inflammation through an apparent interaction with receptors in the 5-lipoxygenase pathway, and a naturally reduced form (without the disulfide bridge) that exists in a linear conformation and which also causes hyperalgesia and acts in the cyclooxygenase type II pathway. The reduced peptide was acetamidomethylated (Acm-Paulistine) to stabilize this form, and it still maintained its typical inflammatory activity. Oxidized Paulistine docks onto PGHS2 (COX-2) molecules, blocking the access of oxygen to the heme group and inhibiting the inflammatory activity of Acm-Paulistine in the cyclooxygenase type II pathway. Docking simulations revealed that the site of the docking of Paulistine within the PGHS2 molecule is unusual among commercial inhibitors of the enzyme, with an affinity potentially much higher than those observed for traditional anti-inflammatory drugs. Therefore, Paulistine causes inflammatory activity at the level of the 5-lipooxygenase pathway and, in parallel, it competes with its reduced form in relation to the activation of the cyclooxygenase pathway. Thus, while the reduced Paulistine causes inflammation, its oxidized form is a potent inhibitor of this activity.


Subject(s)
Anti-Inflammatory Agents , Toxins, Biological , Wasp Venoms/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Carrageenan , Cyclooxygenase 2/metabolism , Edema/chemically induced , Edema/drug therapy , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Male , Mice , Models, Molecular , Pain/chemically induced , Pain/drug therapy , Toxins, Biological/pharmacology , Toxins, Biological/therapeutic use
16.
Article in Portuguese | LILACS | ID: lil-758431

ABSTRACT

Anticorpos, agentes empregados no desenvolvimento de pesquisas biomédicas, no diagnóstico e na terapêutica, possuem elevada capacidade de interação aos mais variados ligantes, Estruturalmente são heterotetrameros constituídos por duas cadeias leves e duas cadeias pesadas com massa molecular de aproximadamente 150 kDa, Visando melhorar as características farmacocinéticas e minimizar possíveis reações adversas desencadeadas por imunoglobulinas de origem não humana, a engenharia molecular de anticorpos vem obtendo fragmentos de anticorpos como porções Fab, F(ab?)2, scFv e Fv, Em adição aos anticorpos convencionais, camelídeos produzem imunoglobulinas funcionais desprovidas de cadeia leve, onde o domínio variável da cadeia pesada, denominado VHH ou nanocorpo, é responsável pelo reconhecimento antigênico, Apresentando características adequadas ao desenvolvimento de fármacos com alta capacidade de neutralização, fragmentos VHHs vêm sendo propostos para uso em imunoterapia passiva ou em drug-delivery, No diagnóstico esses fragmentos podem ser aplicados na construção de biosensores ou na imagiologia, atuando na detecção de células cancerígenas, no monitoramento de tumores ou em alterações celulares...


Antibodies, agents employed for the development of biomedical research, diagnostic and therapeutic, have high ability to interact with different ligands. Structurally are heterotetramers constituted by two light and two heavy chains, with molecular weight of approximately 150 kDa. Aiming to improve the pharmacokinetic properties and minimize possible adverse reactions triggered by immunoglobulins of non-human origin, the molecular engineering of antibodies has been obtaining fragments of antibodies, such as Fab, F(ab?)2, Fv and scFv. In addition to the conventional antibodies, camelids produce functional immunoglobulins devoid of light chain, in which the variable domain, named VHH or nanocorpo, is able to recognize the antigen. With appropriate characteristics for the development of drugs with high neutralizing capacity, VHH fragments have been proposed for use in passive immunotherapy or drug-delivery. To the diagnosis, these fragments can be used to construct biosensors, in the imagiology , acting in the detection of cancer cells, tumor monitoring or cell changes...


Subject(s)
Immunoglobulin Fragments , Immunoglobulin Fragments/therapeutic use , Immunologic Factors
17.
J Control Release ; 217: 121-7, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26334481

ABSTRACT

The formulation of an effective vaccine against malaria is still a significant challenge and the induction of high anti-parasite antibody titers plus a sustained T cell response is mandatory for the success of such a vaccine. We have developed a nanoliposome-based structure which contains plasma membrane-associated proteins (PfMNP) of Plasmodium falciparum merozoites on its surface. Incorporation of parasite-derived proteins led to a significant increase in the size and dispersity of particles. Immunization of particles in BalbC and C57BL/6 mice led to high anti-MSP119 IgG titers (10(4)) after the first dose and reached a plateau (>10(6)) after the third dose. While very high titers were observed against the C-terminal domain of the vaccine candidate MSP1, only modest titers (≤10(3)) were detected against MSP2. The induced antibodies showed also a strong growth-inhibiting effect in reinvasion assays. In addition, PfMNP immunization generated antibodies which partially blocked the inflammatory response, probably by blocking TLR-induced activation of macrophages by malarial toxins such as GPI anchors. The results underline the potential of nanoliposome-based formulations as anti-malarial vaccines.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Membrane Proteins/immunology , Plasmodium falciparum , Protozoan Proteins/immunology , Animals , Cell Line , Immunoglobulin G/immunology , Liposomes , Malaria Vaccines , Male , Merozoites , Mice, Inbred BALB C , Mice, Inbred C57BL
18.
J Microencapsul ; 32(5): 467-77, 2015.
Article in English | MEDLINE | ID: mdl-26052723

ABSTRACT

Synthetic compounds derived from cinnamic acid were tested in cultures containing the promastigote form of Leishmania amazonensis and the dimethylsulphoxide solution of B2 compound (2.0 mg/mL) led to a 92% decrease of leishmania in 96 h of treatment. Then, different liposomal systems (diameters ∼200 nm) were prepared by the extrusion method in the presence and absence of compounds studied. DSC thermograms of the liposomes in the presence of these compounds caused changes in ΔH, Tm and ΔT1/2, compared to controls, indicating that there was an interaction of the compounds with the lipid bilayer. Assays with negatively charged liposomal systems containing these drugs in L. amazonensis cultures led to a 50-80% decrease in the number of leishmanias with a concentration to 100 times lower when compared to the B2 initial test. These liposomal systems are promoting more interaction and delivery of the compounds and proved to be an efficient, stable and promising system.


Subject(s)
Antiprotozoal Agents/chemistry , Cinnamates/chemistry , Leishmania/growth & development , Antiprotozoal Agents/pharmacology , Cinnamates/pharmacology , Liposomes
19.
BMC Complement Altern Med ; 15: 165, 2015 Jun 06.
Article in English | MEDLINE | ID: mdl-26048712

ABSTRACT

BACKGROUND: 3beta,6beta,16beta-trihydroxylup-20(29)-ene is a lupane triterpene isolated from Combretum leprosum fruit. The lupane group has been extensively used in studies on anticancer effects; however, its possible activity against protozoa parasites is yet poorly known. The high toxicity of the compounds currently used in leishmaniasis chemotherapy stimulates the investigation of new molecules and drug targets for antileishmanial therapy. METHODS: The activity of 3beta,6beta,16beta-trihydroxylup-20(29)-ene was evaluated against Leishmania (L.) amazonensis by determining the cytotoxicity of the compound on murine peritoneal macrophages, as well as its effects on parasite survival inside host cells. To evaluate the effect of this compound on intracellular amastigotes, cultures of infected macrophages were treated for 24, 48 and 96 h and the percentage of infected macrophages and the number of intracellular parasites was scored using light microscopy. RESULTS: Lupane showed significant activity against the intracellular amastigotes of L. (L.) amazonensis. The treatment with 109 µM for 96 h reduced in 80 % the survival index of parasites in BALB/c peritoneal macrophages. At this concentration, the triterpene caused no cytotoxic effects against mouse peritoneal macrophages. Ultrastructural analyses of L. (L.) amazonensis intracellular amastigotes showed that lupane induced some morphological changes in parasites, such as cytosolic vacuolization, lipid body formation and mitochondrial swelling. Bioinformatic analyses through molecular docking suggest that this lupane has high-affinity binding with DNA topoisomerase. CONCLUSION: Taken together, our results have showed that the lupane triterpene from C. leprosum interferes with L. (L.) amazonensis amastigote replication and survival inside vertebrate host cells and bioinformatics analyses strongly indicate that this molecule may be a potential inhibitor of topoisomerase IB. Moreover, this study opens major prospects for the development of novel chemotherapeutic agents with leishmanicidal activity.


Subject(s)
Combretum/chemistry , Leishmania mexicana/drug effects , Leishmaniasis/parasitology , Macrophages, Peritoneal/parasitology , Plant Extracts/pharmacology , Triterpenes/pharmacology , Animals , Cytoplasm/parasitology , DNA Topoisomerases, Type I/drug effects , Female , Fruit/chemistry , In Vitro Techniques , Leishmaniasis/drug therapy , Mice , Mice, Inbred BALB C , Phytotherapy , Plant Extracts/chemistry , Triterpenes/isolation & purification
20.
Peptides ; 72: 164-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25944744

ABSTRACT

In this study, a series of mastoparan analogs were engineered based on the strategies of Ala and Lys scanning in relation to the sequences of classical mastoparans. Ten analog mastoparans, presenting from zero to six Lys residues in their sequences were synthesized and assayed for some typical biological activities for this group of peptide: mast cell degranulation, hemolysis, and antibiosis. In relation to mast cell degranulation, the apparent structural requirement to optimize this activity was the existence of one or two Lys residues at positions 8 and/or 9. In relation to hemolysis, one structural feature that strongly correlated with the potency of this activity was the number of amino acid residues from the C-terminus of each peptide continuously embedded into the zwitterionic membrane of erythrocytes-mimicking liposomes, probably due to the contribution of this structural feature to the membrane perturbation. The antibiotic activity of mastoparan analogs was directly dependent on the apparent extension of their hydrophilic surface, i.e., their molecules must have from four to six Lys residues between positions 4 and 11 of the peptide chain to achieve activities comparable to or higher than the reference antibiotic compounds. The optimization of the antibacterial activity of the mastoparans must consider Lys residues at the positions 4, 5, 7, 8, 9, and 11 of the tetradecapeptide chain, with the other positions occupied by hydrophobic residues, and with the C-terminal residue in the amidated form. These requirements resulted in highly active AMPs with greatly reduced (or no) hemolytic and mast cell degranulating activities.


Subject(s)
Cell Degranulation/drug effects , Erythrocytes/metabolism , Hemolysis/drug effects , Mast Cells/metabolism , Membranes, Artificial , Peptides/chemistry , Peptides/pharmacology , Wasp Venoms/chemistry , Wasp Venoms/pharmacology , Animals , Intercellular Signaling Peptides and Proteins , Lysine/chemistry , Protein Structure, Secondary , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...