Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 5(8): 1640-1651, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28703822

ABSTRACT

Stromal cell-derived factor-1 (SDF-1) and its key receptor CXCR4 have been implicated in directing cellular recruitment for several pathological/disease conditions thus also gained considerable attention for regenerative medicine. One regenerative approach includes sustained release of SDF-1 to stimulate prolonged stem cell recruitment. However, the impact of SDF-1 sustained release on the endogenous SDF-1/CXCR4 signaling axis is largely unknown as auto-regulatory mechanisms typically dictate cytokine/receptor signaling. We hypothesize that spatiotemporal presentation of exogenous SDF-1 is a key factor in achieving long-term manipulation of endogenous SDF-1/CXCR4 signaling. Here in the present study, we sought to probe our hypothesis using a transgenic mouse model to contrast the spatial activation of endogenous SDF-1 and CXCR4 in response to exogenous SDF-1 injected in bolus or controlled release (PLGA nanoparticles) form in the adult rodent cortex. Our data suggests that the manner of SDF-1 presentation significantly affected initial CXCR4 cellular activation/recruitment despite having similar protein payloads over the first 24 h (∼30 ng for both bolus and sustained release groups). Yet, one week post-injection, this response was negligible. Therefore, the transient nature CXCR4 recruitment/activation in response to bolus or controlled release SDF-1 indicated that cytokine/receptor auto-regulatory mechanisms may demand more complex release profiles (i.e. delayed and/or pulsed release) to achieve sustained cellular response.


Subject(s)
Cerebral Cortex/cytology , Chemokine CXCL12/metabolism , Lactic Acid/chemistry , Lactic Acid/pharmacology , Nanoparticles , Polyglycolic Acid/chemistry , Polyglycolic Acid/pharmacology , Receptors, CXCR4/metabolism , Signal Transduction/drug effects , Animals , Chemokine CXCL12/pharmacology , Diffusion , Mice , Polylactic Acid-Polyglycolic Acid Copolymer
2.
J Mater Chem B ; 5(23): 4487-4498, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28652916

ABSTRACT

Composite microparticles (MPs) with layered architecture, engineered from poly(L-lactic acid) (PLLA) and poly(D,L-lactic-co-glycolic acid) (PLGA), are promising devices for achieving the delayed release of proteins. Here, we build on a water-in-oil-in-oil-in-water emulsion method of fabricating layered MPs with an emphasis on modulating the delay period of the protein release profile. Particle hardening parameters (i.e. polymer precipitation rate and total hardening time) following water-in-oil-in-oil-in-water emulsions are known to affect MP structure such as the core/shell material and cargo localization. We demonstrate that layered MPs fabricated with two different solvent evaporation parameters not only alter polymer and protein distribution within the hardened MPs, but also affect their protein release profiles. Secondly, we hypothesize that ethanol (EtOH), a semi-polar solvent miscible in both the solvent (dichloromethane; DCM) and non-solvent aqueous phases, likely alters DCM and water flux from the dispersed oil phase. The results reveal that EtOH affects protein distribution within MPs, and may also influence MP structural properties such as porosity and polymer distribution. To our knowledge, we are the first to demonstrate EtOH as a means for modulating critical release parameters from protein-loaded, layered PLGA/PLLA MPs. Throughout all the groups in the study, we achieved differential delay periods (between 0 - 30 days after an initial burst release) and total protein release periods (~30 - >58 days) as a function of solvent evaporation parameters and EtOH content. The layered MPs proposed in the study potentially have wide-reaching applications in tissue engineering for delayed and sequential protein release.

3.
Matrix Biol ; 60-61: 206-216, 2017 07.
Article in English | MEDLINE | ID: mdl-27645115

ABSTRACT

The chemokine SDF-1α plays a critical role in mediating stem cell response to injury and disease and has specifically been shown to mobilize neural progenitor/stem cells (NPSCs) towards sites of neural injury. Current neural transplant paradigms within the brain suffer from low rates of retention and engraftment after injury. Therefore, increasing transplant sensitivity to injury-induced SDF-1α represents a method for increasing neural transplant efficacy. Previously, we have reported on a hyaluronic acid-laminin based hydrogel (HA-Lm gel) that increases NPSC expression of SDF-1α receptor, CXCR4, and subsequently, NPSC chemotactic migration towards a source of SDF-1α in vitro. The study presented here investigates the capacity of the HA-Lm gel to promote NPSC response to exogenous SDF-1α in vivo. We observed the HA-Lm gel to significantly increase NPSC transplant retention and migration in response to SDF-1α in a manner critically dependent on signaling via the SDF-1α-CXCR4 axis. This work lays the foundation for development of a more effective cell therapy for neural injury, but also has broader implications in the fields of tissue engineering and regenerative medicine given the essential roles of SDF-1α across injury and disease states.


Subject(s)
Brain Injuries/therapy , Chemokine CXCL12/pharmacology , Hyaluronic Acid/pharmacology , Laminin/pharmacology , Receptors, CXCR4/metabolism , Stem Cell Transplantation , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Injuries/chemically induced , Brain Injuries/genetics , Brain Injuries/pathology , Cell Movement/drug effects , Cell- and Tissue-Based Therapy/methods , Chemokine CXCL12/metabolism , Embryo, Mammalian , Gene Expression , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Injections, Intraventricular , Laminin/chemistry , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Receptors, CXCR4/genetics , Signal Transduction , Stereotaxic Techniques , Tissue Scaffolds
4.
J Mater Chem B ; 3(40): 7963-7973, 2015 Oct 31.
Article in English | MEDLINE | ID: mdl-26660666

ABSTRACT

The chemokine, stromal cell-derived factor 1α (SDF-1α), is a key regulator of the endogenous neural progenitor/stem cell-mediated regenerative response after neural injury. Increased and sustained bioavailability of SDF-1α in the peri-injury region is hypothesized to modulate this endogenous repair response. Here, we describe poly(lactic-co-glycolic) acid (PLGA) nanoparticles capable of releasing bioactive SDF-1α in a sustained manner over 60days after a burst of 23%. Moreover, we report a biphasic cellular response to SDF-1α concentrations thus the large initial burst release in an in vivo setting may result in supratherapeutic concentrations of SDF-1α. Specific protein-protein interactions between SDF-1α and fibrin (as well as its monomer, fibrinogen) were exploited to control the magnitude of the burst release. Nanoparticles embedded in fibrin significantly reduced the amount of SDF-1α released after 72 hrs as a function of fibrin density. Therefore, the nanoparticle/fibrin composites represented a means to independently tune the magnitude of the burst phase release from the nanoparticles while perserving a bioactive depot of SDF-1α for release over 60days.

5.
Biomaterials ; 72: 11-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26340314

ABSTRACT

Traumatic brain injury (TBI) initiates an expansive biochemical insult that is largely responsible for the long-term dysfunction associated with TBI; however, current clinical treatments fall short of addressing these underlying sequelae. Pre-clinical investigations have used stem cell transplantation with moderate success, but are plagued by staggeringly low survival and engraftment rates (2-4%). As such, providing cell transplants with the means to better dynamically respond to injury-related signals within the transplant microenvironment may afford improved transplantation survival and engraftment rates. The chemokine stromal cell-derived factor-1α (SDF-1α) is a potent chemotactic signal that is readily present after TBI. In this study, we sought to develop a transplantation vehicle to ultimately enhance the responsiveness of neural transplants to injury-induced SDF-1α. Specifically, we hypothesize that a hyaluronic acid (HA) and laminin (Lm) hydrogel would promote 1. upregulated expression of the SDF-1α receptor CXCR4 in neural progenitor/stem cells (NPSCs) and 2. enhanced NPSC migration in response to SDF-1α gradients. We demonstrated successful development of a HA-Lm hydrogel and utilized standard protein and cellular assays to probe NPSC CXCR4 expression and NPSC chemotactic migration. The findings demonstrated that NPSCs significantly increased CXCR4 expression after 48 h of culture on the HA-Lm gel in a manner critically dependent on both HA and laminin. Moreover, the HA-Lm hydrogel significantly increased NPSC chemotactic migration in response to SDF-1α at 48 h, an effect that was critically dependent on HA, laminin and the SDF-1α gradient. Therefore, this hydrogel serves to 1. prime NPSCs for the injury microenvironment and 2. provide the appropriate infrastructure to support migration into the surrounding tissue, equipping cells with the tools to more effectively respond to the injury microenvironment.


Subject(s)
Chemokine CXCL12/pharmacology , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Laminin/pharmacology , Neural Stem Cells/cytology , Animals , Cell Count , Cell Survival/drug effects , Chemotaxis/drug effects , Mice, Inbred C57BL , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Receptors, CXCR4/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...