Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Reprod ; 33(12): 2184-2195, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30388265

ABSTRACT

STUDY QUESTION: Have decidual natural killer (dNK) cells a different microRNA (miRNA or miR) expression pattern compared to NK cells circulating in the peripheral blood (pb) of healthy pregnant women in the first trimester of gestation? SUMMARY ANSWER: dNK cells have a unique miRNA profile, showing exclusive expression of a set of miRNAs and significant up- or down-regulation of most of the miRNAs shared with pbNK cells. WHAT IS KNOWN ALREADY: dNK cells differ from pbNK cells both phenotypically and functionally, and their origin is still debated. Many studies have indicated that miRNAs regulate several important aspects of NK cell biology, such as development, activation and effector functions. STUDY DESIGN, SIZE, DURATION: Decidua basalis and peripheral blood specimens were collected from women (n = 7) undergoing voluntary termination of gestation in the first trimester of pregnancy. dNK and pbNK cells were then highly purified by cell sorting. PARTICIPANTS/MATERIALS, SETTING, METHODS: miRNAs expression was analysed by quantitative RT-PCR (qRT-PCR)-based arrays using RNA purified from freshly isolated and highly purified pbNK and dNK cells. Results from arrays were validated by qRT-PCR assays. The bioinformatics tool ingenuity pathway analysis (IPA) was applied to determine the cellular network targeted by validated miRNAs and the correlated biological functions. MAIN RESULTS AND THE ROLE OF CHANCE: Herein, we identified the most differentially expressed miRNAs in NK cells isolated from peripheral blood and uterine decidua of pregnant women. We found that 36 miRNAs were expressed only in dNK cells and two miRNAs only in pbNK cells. Moreover, 48 miRNAs were commonly expressed by both NK cell preparations although at different levels: 28 were upregulated in dNK cells, while 15 were downregulated compared to pbNK cells. Validation of a selected set (n = 11) of these miRNAs confirmed the differential expression of nine miRNAs: miR-10b and miR-214 expressed only in dNK cells and miR-200a-3p expressed only in pbNK cells; miR-130b-3p, miR-125a-5p, miR-212-3p and miR-454 were upregulated while miR-210-3p and miR-132 were downregulated in dNK cells compared to pbNK cells. IPA network analysis identified a single network connecting all the miRNAs as well as their significant involvement in several classes of functions: 'Organismal injury, Reproductive system disease, Inflammatory disease' and 'Cellular development'. These miRNAs target molecules such as argonaute 2, tumour protein p53, insulin and other genes that belong to the same network and significantly influence cell differentiation and pregnancy. LIMITATIONS, REASONS FOR CAUTION: In the present study, the cellular network and biological functions modulated by miRNAs differentially expressed in dNK and pbNK cells were identified by IPA considering only molecules and relationships that were with confidence 'experimentally observed' in leucocytes. The decidual and pbNK cells that were analysed here are a heterogeneous population and further study will help to disentangle whether there are differences in miRNA production by the different subsets of NK cells. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study describing a different miRNA expression profile in dNK cells compared to matched pbNK cells during the first trimester of pregnancy. Our findings improved the body of knowledge on dNK cell biology and strongly suggest further investigation into the roles of miRNAs that are differentially expressed in human dNK compared to pbNK cells. Our results suggest that specific miRNAs can modulate dNK cell origin and functions, highlighting a potential role of this miRNA signature in human development and diseases. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from the Istituto Pasteur, Fondazione Cenci Bolognetti, the European NoE EMBIC within FP6 (Contract number LSHN-CT-2004-512040), Istituto Italiano di Tecnologia, and Ministero dell'Istruzione, dell'Università e della Ricerca (Ricerche Universitarie), and from Università Politecnica delle Marche. There are no conflicts of interest to declare.


Subject(s)
Decidua/metabolism , Gene Expression Regulation , Killer Cells, Natural/metabolism , MicroRNAs/metabolism , Pregnancy Trimester, First/metabolism , Decidua/cytology , Female , Gene Expression Profiling , Humans , Pregnancy
2.
Rev Sci Instrum ; 80(11): 113102, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947712

ABSTRACT

We report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH) sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH sources can be produced in two independent spatially separated gas jets, allowing for probing centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than 30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic density of 3x10(20) cm(-3) 1.1 ns after the creation of a plasma on aluminum target.

3.
Phys Rev Lett ; 95(2): 025001, 2005 Jul 08.
Article in English | MEDLINE | ID: mdl-16090690

ABSTRACT

In this Letter, we demonstrate the instantaneous creation of a hot solid-density plasma generated by focusing an intense femtosecond, high temporal contrast laser on an ultrathin foil (100 nm) in the 10(18) W/cm2 intensity range. The use of high-order harmonics generated in a gas jet, providing a probe beam of sufficiently short wavelengths to penetrate such a medium, enables the study of the dynamics of this plasma on the 100 fs time scale. The comparison of the transmission of two successive harmonics permits us to determine the electronic density and the temperature with accuracies better than 15%, never achieved up to this date in the regime of laser pulses at relativistic intensity.

4.
Phys Rev Lett ; 92(6): 065503, 2004 Feb 13.
Article in English | MEDLINE | ID: mdl-14995252

ABSTRACT

We present an experimental point for the carbon equation of state (EOS) at megabar pressures, obtained by laser-driven shock waves. The rear side emissivity of "two-materials two-steps" targets (Al-C) was recorded with space and time resolution and, by applying the impedance mismatch method, allowed a direct determination of relative EOS points. Experiments were performed at the PALS and LULI laboratories using carbon samples with two different values of initial density, in order to explore a wider region of the phase diagram. Previously unreached pressures were obtained. The results are compared with previous experiments and with available theoretical models and seem to show a high compressibility of carbon at megabar pressures.

5.
Curr Pharm Des ; 9(7): 553-66, 2003.
Article in English | MEDLINE | ID: mdl-12570803

ABSTRACT

Angiogenesis is the process of generating new capillary blood vessels. Uncontrolled endothelial cell proliferation is observed in tumor neovascularization and in angioproliferative diseases. Tumors cannot growth as a mass above few mm(3) unless a new blood supply is induced. It derives that the control of the neovascularization process may affect tumor growth and may represent a novel approach to tumor therapy. Angiogenesis is controlled by a balance between proangiogenic and antiangiogenic factors. The angiogenic switch represents the net result of the activity of angiogenic stimulators and inhibitors, suggesting that counteracting even a single major angiogenic factor could shift the balance towards inhibition. Heparan sulfate proteoglycans are involved in the modulation of the neovascularization that takes place in different physiological and pathological conditions. This modulation occurs through the interaction with angiogenic growth factors or with negative regulators of angiogenesis. Thus, the study of the biochemical bases of this interaction may help to design glycosaminoglycan analogs endowed with angiostatic properties. The purpose of this review is to provide an overview of the structure/function of heparan sulfate proteoglycans in endothelial cells and to summarize the angiostatic properties of synthetic heparin-like compounds, chemically modified heparins, and biotechnological heparins.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Heparin/analogs & derivatives , Heparin/pharmacology , Neovascularization, Pathologic/drug therapy , Angiogenesis Inducing Agents/antagonists & inhibitors , Animals , Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Heparan Sulfate Proteoglycans/metabolism , Heparan Sulfate Proteoglycans/physiology , Neoplasms/blood supply , Neoplasms/drug therapy , Neovascularization, Pathologic/physiopathology
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(6 Pt 2): 067403, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14754363

ABSTRACT

The ablation pressure at a 0.44-microm laser wavelength has been measured at irradiance up to 2 x 10(14) W/cm(2). The diagnostics consisted in the detection of shock breakout from stepped Al targets. By adopting large focal spots and smoothed laser beams, the lateral energy transport and "drilling effects" have been avoided. The measured scaling shows a fair agreement with analytical models.

7.
Oncogene ; 20(21): 2655-63, 2001 May 10.
Article in English | MEDLINE | ID: mdl-11420677

ABSTRACT

Recombinant Fibroblast Growth Factor-4 (FGF4) and FGF2 induce extracellular signal-regulated kinase-1/2 activation and DNA synthesis in murine aortic endothelial (MAE) cells. These cells co-express the IIIc/Ig-3 loops and the novel glycosaminoglycan-modified IIIc/Ig-2 loops isoforms of FGF receptor-2 (FGFR2). The affinity of FGF4/FGFR2 interaction is 20-30 times lower than that of FGF2 and is enhanced by heparin. Overexpression of FGF2 or FGF4 cDNA in MAE cells results in a transformed phenotype and increased proliferative capacity, more evident for FGF2 than FGF4 transfectants. Both transfectants induce angiogenesis when applied on the top of the chick embryo chorioallantoic membrane. However, in contrast with FGF2-transfected cells, FGF4 transfectants show a limited capacity to growth under anchorage-independent conditions and lack the ability to invade 3D fibrin gel and to undergo morphogenesis in vitro. Also, they fail to induce hemangiomas when injected into the allantoic sac of the chick embryo. In conclusion, although exogenous FGF2 and FGF4 exert a similar response in MAE cells, significant differences are observed in the biological behavior of FGF4 versus FGF2 transfectants, indicating that the expression of the various members of the FGF family can differently affect the behavior of endothelial cells and, possibly, of other cell types, including tumor cells.


Subject(s)
Fibroblast Growth Factors/pharmacology , Fibroblast Growth Factors/physiology , Proto-Oncogene Proteins/pharmacology , Proto-Oncogene Proteins/physiology , 3T3 Cells/physiology , Allantois/blood supply , Animals , Cell Line , Chick Embryo , Chorion/blood supply , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 4 , Fibroblast Growth Factors/biosynthesis , Fibroblast Growth Factors/genetics , Humans , Mice , Mice, Inbred BALB C , Neovascularization, Physiologic/physiology , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , Recombinant Proteins/pharmacology , Transfection
8.
Eur J Biochem ; 267(9): 2720-30, 2000 May.
Article in English | MEDLINE | ID: mdl-10785395

ABSTRACT

Azospirillum brasilense glutamate synthase is a complex iron-sulfur flavoprotein that catalyses the NADPH-dependent reductive transfer of glutamine amide group to the C(2) carbon of 2-oxoglutarate to yield L-glutamate. Its catalytically active alphabeta protomer is composed of two dissimilar subunits (alpha subunit, 164.2 kDa; beta subunit, 52.3 kDa) and contains one FAD (at Site 1, the pyridine nucleotide site within the beta subunit), one FMN (at Site 2, the 2-oxoglutarate/L-glutamate site in the alpha subunit) and three different iron-sulfur clusters (one 3Fe-4S center on the alpha subunit and two 4Fe-4S clusters of unknown location). A plasmid harboring the gltD and gltB genes, the genes encoding the glutamate synthase beta and alpha subunits, respectively, each one under the control of the T7/lac promoter of pET11a was found to be suitable for the overproduction of glutamate synthase holoenzyme in Escherichia coli BL21(DE3) cells. Recombinant A. brasilense glutamate synthase could be purified to homogeneity from overproducing E. coli cells by ion exchange chromatography, gel filtration and affinity chromatography on a 2',5' ADP-Sepharose 4B column. The purified enzyme was indistinguishable from that prepared from Azospirillum cells with respect to cofactor content, N-terminal sequence of the subunits, aggregation state, kinetic and spectroscopic properties. The study of the recombinant holoenzyme allowed us to establish that the tendency of glutamate synthase to form a stable (alphabeta)4 tetramer at high protein concentrations is a property unique to the holoenzyme, as the isolated beta subunit does not oligomerize, while the isolated glutamate synthase alpha subunit only forms dimers at high protein concentrations. Furthermore, the steady-state kinetic analysis of the glutamate synthase reaction was extended to the study of the effect of adenosine-containing nucleotides. Compounds such as cAMP, AMP, ADP and ATP have no effect on the enzyme activity, while the 2'-phosphorylated analogs of AMP and NADP(H) analogs act as inhibitors of the reaction, competitive with NADPH. Thus, it can be ruled out that glutamate synthase reaction is subjected to allosteric modulation by adenosine containing (di)nucleotides, which may bind to the putative ADP-binding site at the C-terminus of the alpha subunit. At the same time, the strict requirement of a 2'-phosphate group in the pyridine nucleotide for binding to glutamate synthase (GltS) was established. Finally, by comparing the inhibition constants exhibited by a series of NADP+ analogs, the contribution to the binding energy of the various parts of the pyridine nucleotide has been determined along with the effect of substituents on the 3 position of the pyridine ring. With the exception of thio-NADP+, which binds the tightest to GltS, it appears that the size of the substituent is the factor that affects the most the interaction between the NADP(H) analog and the enzyme.


Subject(s)
Azospirillum brasilense/enzymology , Glutamate Synthase/metabolism , Iron-Sulfur Proteins/metabolism , Adenine Nucleotides/pharmacology , Catalysis , Plasmids , Recombinant Proteins/metabolism , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...