Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol Lett ; 29(1): 104, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997630

ABSTRACT

BACKGROUND: Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-TDP), amyotrophic lateral sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE) are associated with deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43) in neurons. One complexity of this process lies in the ability of TDP-43 to form liquid-phase membraneless organelles in cells. Previous work has shown that the recombinant, purified, prion-like domain (PrLD) forms liquid droplets in vitro, but the behaviour of the complementary fragment is uncertain. METHODS: We have purified such a construct without the PrLD (PrLD-less TDP-43) and have induced its phase separation using a solution-jump method and an array of biophysical techniques to study the morphology, state of matter and structure of the TDP-43 assemblies. RESULTS: The fluorescent TMR-labelled protein construct, imaged using confocal fluorescence, formed rapidly (< 1 min) round, homogeneous and 0.5-1.0 µm wide assemblies which then coalesced into larger, yet round, species. When labelled with AlexaFluor488, they initially exhibited fluorescence recovery after photobleaching (FRAP), showing a liquid behaviour distinct from full-length TDP-43 and similar to PrLD. The protein molecules did not undergo major structural changes, as determined with circular dichroism and intrinsic fluorescence spectroscopies. This process had a pH and salt dependence distinct from those of full-length TDP-43 and its PrLD, which can be rationalized on the grounds of electrostatic forces. CONCLUSIONS: Similarly to PrLD, PrLD-less TDP-43 forms liquid droplets in vitro through liquid-liquid phase separation (LLPS), unlike the full-length protein that rather undergoes liquid-solid phase separation (LSPS). These results offer a rationale of the complex electrostatic forces governing phase separation of full-length TDP-43 and its fragments. On the one hand, PrLD-less TDP-43 has a low pI and oppositively charged domains, and LLPS is inhibited by salts, which attenuate inter-domain electrostatic attractions. On the other hand, PrLD is positively charged due to a high isoionic point (pI) and LLPS is therefore promoted by salts and pH increases as they both reduce electrostatic repulsions. By contrast, full-length TDP-43 undergoes LSPS most favourably at its pI, with positive and negative salt dependences at lower and higher pH, respectively, depending on whether repulsive or attractive forces dominate, respectively.


Subject(s)
DNA-Binding Proteins , Protein Domains , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Humans , Fluorescence Recovery After Photobleaching , Phase Separation
2.
Biomed Pharmacother ; 175: 116785, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781869

ABSTRACT

Rearrangement of the actin cytoskeleton is a prerequisite for carcinoma cells to develop cellular protrusions, which are required for migration, invasion, and metastasis. Fascin is a key protein involved in actin bundling and is expressed in aggressive and invasive carcinomas. Additionally, fascin appears to be involved in tubulin-binding and microtubule rearrangement. Pharmacophoric-based in silico screening was performed to identify compounds with better fascin inhibitory properties than migrastatin, a gold-standard fascin inhibitor. We hypothesized that monastrol displays anti-migratory and anti-invasive properties via fascin blocking in colorectal cancer cell lines. Biophysical (thermofluor and ligand titration followed by fluorescence spectroscopy), biochemical (NMR), and cellular assays (MTT, invasion of human tissue), as well as animal model studies (zebrafish invasion) were performed to characterize the inhibitory effect of monastrol on fascin activity. In silico analysis revealed that monastrol is a potential fascin-binding compound. Biophysical and biochemical assays demonstrated that monastrol binds to fascin and interferes with its actin-bundling activity. Cell culture studies, including a 3D human myoma disc model, showed that monastrol inhibited fascin-driven cytoplasmic protrusions as well as invasion. In silico, confocal microscopy, and immunoprecipitation assays demonstrated that monastrol disrupted fascin-tubulin interactions. These anti-invasive effects were confirmed in vivo. In silico confocal microscopy and immunoprecipitation assays were carried out to test whether monastrol disrupted the fascin-tubulin interaction. This study reports, for the first time, the in vitro and in vivo anti-invasive properties of monastrol in colorectal tumor cells. The number and types of interactions suggest potential binding of monastrol across actin and tubulin sites on fascin, which could be valuable for the development of antitumor therapies.


Subject(s)
Carrier Proteins , Colorectal Neoplasms , Kinesins , Microfilament Proteins , Neoplasm Invasiveness , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Microfilament Proteins/metabolism , Carrier Proteins/metabolism , Kinesins/metabolism , Kinesins/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Movement/drug effects , Neoplasm Metastasis/prevention & control , Pyrimidines/pharmacology , Signal Transduction/drug effects , Thiones/pharmacology , Antineoplastic Agents/pharmacology
3.
Ann Med ; 55(1): 72-88, 2023 12.
Article in English | MEDLINE | ID: mdl-36495262

ABSTRACT

Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-ß-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-ß structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-ß structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology
4.
Protein Sci ; 31(12): e4509, 2022 12.
Article in English | MEDLINE | ID: mdl-36371546

ABSTRACT

Amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions are associated with deposition of cytosolic inclusion bodies of TAR DNA-binding protein 43 (TDP-43) in brain and motor neurons. We induced phase separation of purified full-length TDP-43 devoid of large tags using a solution-jump method, and monitored it with an array of biophysical techniques. The tetramethylrhodamine-5-maleimide- or Alexa488-labeled protein formed rapidly (<1 min) apparently round, homogeneous and 0.5-1.0 µm wide assemblies, when imaged using confocal fluorescence, bright-field, and stimulated emission depletion microscopy. The assemblies, however, had limited internal diffusion, as assessed with fluorescence recovery after photobleaching, and did not coalesce, but rather clustered into irregular bunches, unlike those formed by the C-terminal domain. They were enriched with α-helical structure, with minor contributions of ß-sheet/random structure, had a red-shifted tryptophan fluorescence and did not bind thioflavin T. By monitoring with turbidimetry both the formation of the spherical species and their further clustering under different experimental conditions, we carried out a multiparametric analysis of the two phenomena. In particular, both processes were found to be promoted by high protein concentrations, salts, crowding agents, weakly by reducing agents, as the pH approached a value of 6.0 from either side (corresponding to the TDP-43 isoionic point), and as the temperature approached a value of 31°C from either side. Important differences were found with respect to the TDP-43 C-terminal domain. Our multiparametric results also provide explanations to some of the solubility data obtained on full-length TDP-43 that were difficult to explain following the multiparametric analysis acquired on the C-terminal domain.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Humans , Frontotemporal Lobar Degeneration/metabolism , DNA-Binding Proteins/chemistry , Inclusion Bodies , Brain/metabolism
5.
J Biol Inorg Chem ; 23(1): 71-80, 2018 01.
Article in English | MEDLINE | ID: mdl-29218635

ABSTRACT

Paramagnetic NMR data can be profitably incorporated in structural refinement protocols of metalloproteins or metal-substituted proteins, mostly as distance or angle restraints. However, they could in principle provide much more information, because the magnetic susceptibility of a paramagnetic metal ion is largely determined by its coordination sphere. This information can in turn be used to evaluate changes occurring in the coordination sphere of the metal when ligands (e.g.: inhibitors) are bound to the protein. This gives an experimental handle on the molecular structure in the vicinity of the metal which falls in the so-called blind sphere. The magnetic susceptibility anisotropy tensors of cobalt(II) and nickel(II) ions bound to human carbonic anhydrase II in free and inhibited forms have been determined. The change of the magnetic susceptibility anisotropy is directly linked to the binding mode of different ligands in the active site of the enzyme. Indication about the metal coordination sphere in the presence of an inhibitor in pharmaceutically relevant proteins could be important in the design of selective drugs with a structure-based approach.


Subject(s)
Carbonic Anhydrase II/metabolism , Cobalt/metabolism , Magnetic Resonance Spectroscopy/statistics & numerical data , Metalloproteins/metabolism , Nickel/metabolism , Anisotropy , Carbonic Anhydrase II/chemistry , Catalytic Domain , Cobalt/chemistry , Coordination Complexes/chemistry , Furosemide/chemistry , Humans , Ligands , Metalloproteins/chemistry , Models, Theoretical , Molecular Structure , Nickel/chemistry , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL