Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 7154, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34887399

ABSTRACT

Sub-daily and weekly flow cycles termed 'hydropeaking' are common features in regulated rivers worldwide. Weekly flow periodicity arises from fluctuating electricity demand and production tied to socioeconomic activity, typically with higher consumption during weekdays followed by reductions on weekends. Here, we propose a weekly hydropeaking index to quantify the 1920-2019 intensity and prevalence of weekly hydropeaking cycles at 500 sites across the United States of America and Canada. A robust weekly hydropeaking signal exists at 1.8% of sites starting in 1920, peaking at 18.9% in 1963, and diminishing to 3.1% in 2019, marking a 21st century decline in weekly hydropeaking intensity. We propose this decline may be tied to recent, above-average precipitation, socioeconomic shifts, alternative energy production, and legislative and policy changes impacting water management in regulated systems. Vanishing weekly hydropeaking cycles may offset some of the prior deleterious ecohydrological impacts from hydropeaking in highly regulated rivers.

2.
J Hydrol Eng ; 26(9)2021 Sep.
Article in English | MEDLINE | ID: mdl-34497453

ABSTRACT

Hydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated Lake Erie watershed studied here is an important international lake that has experienced recent flooding and shoreline erosion alongside excessive nutrient loads that have contributed to lake eutrophication. Understanding the sources and pathways of flows is critical to solve the complex issues facing this watershed. Seventeen hydrologic and land-surface models of different complexity are set up over this domain using the same meteorological forcings, and their simulated streamflows at 46 calibration and seven independent validation stations are compared. Results show that: (1) the good performance of Machine Learning models during calibration decreases significantly in validation due to the limited amount of training data; (2) models calibrated at individual stations perform equally well in validation; and (3) most distributed models calibrated over the entire domain have problems in simulating urban areas but outperform the other models in validation.

SELECTION OF CITATIONS
SEARCH DETAIL
...