Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(14): 145101, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37862644

ABSTRACT

We report the observation of a set of coherent high frequency electromagnetic fluctuations that leads to a turbulence induced self-regulating phenomenon in the DIII-D high bootstrap current fraction plasma. The fluctuations have frequency of 130-220 kHz, the poloidal wavelength and phase velocity are 16-30 m^{-1} and ∼30 km/s, respectively, in the outboard midplane with the estimated toroidal mode number n∼5-9. The fluctuations are located in the internal transport barrier (ITB) region at large radius and are experimentally validated to be kinetic ballooning modes (KBM). Quasilinear estimation predicts the KBM to be able to drive experimental particle flux and non-negligible thermal flux, suggesting its significant role in regulating the ITB saturation.

2.
Phys Rev Lett ; 120(7): 075001, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542943

ABSTRACT

A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.

3.
Phys Rev Lett ; 118(1): 015002, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106437

ABSTRACT

Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. The prediction of the velocity profile by integrating the momentum balance equation produces a rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile.

4.
Phys Rev Lett ; 110(5): 055003, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23414026

ABSTRACT

The shear in the mean field velocity Doppler shift is shown to suppress the amplitude of electric potential fluctuations by inducing a shift in the peak of the radial wave number spectrum. An analytic model of the process shows that the fluctuation spectrum shifts in the direction where the velocity shear is linearly destabilizing but that nonlinear mixing causes a recentering of the spectrum about a shifted radial wave number at reduced amplitude A model for the 2D nonlinear spectrum is used in a quasilinear calculation of the transport that is shown to accurately reproduce the suppression of energy and particle transport and the Reynolds stress due to the velocity shear.

5.
Phys Rev Lett ; 110(4): 045003, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-25166172

ABSTRACT

A critical gradient threshold has been observed for the first time in a systematic, controlled experiment for a locally measured turbulent quantity in the core of a confined high-temperature plasma. In an experiment in the DIII-D tokamak where L(T(e))(-1) = |∇T(e)|/T(e) and toroidal rotation were varied, long wavelength (k(θ)ρ(s) ≲ 0.4) electron temperature fluctuations exhibit a threshold in L(T(e))(-1): below, they change little; above, they steadily increase. The increase in δT(e)/T(e) is concurrent with increased electron heat flux and transport stiffness. Observations were insensitive to rotation. Accumulated evidence strongly enforces the identification of the experimentally observed threshold with ∇T(e)-driven trapped electron mode turbulence.

6.
Phys Rev Lett ; 107(13): 135004, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-22026864

ABSTRACT

New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.

7.
Rev Sci Instrum ; 79(10): 103505, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044712

ABSTRACT

A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

8.
Phys Rev Lett ; 100(3): 035002, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-18232989

ABSTRACT

Core electron-temperature fluctuations [0.5%< or =T[over ]_(e)/T_(e)< or =2%, k_(theta)rho_(s)< or =0.3 in neutral-beam-heated low confinement-mode (L-mode) plasmas] are observed to decrease by at least a factor of 4 in standard and quiescent high-confinement-mode (H-mode and QH-mode) regimes in the DIII-D tokamak (r/a=0.7). These fluctuations are attributed to ion temperature gradient (ITG) modes stabilized by rotational shear at the H-mode transition. The simultaneous reduction in electron heat diffusivity (chi_(e)(QH)/chi_(e)(L)<0.25) suggests that T[over ]_(e) fluctuations can contribute significantly to L-mode electron heat transport.

9.
Phys Rev Lett ; 86(20): 4544-7, 2001 May 14.
Article in English | MEDLINE | ID: mdl-11384279

ABSTRACT

A new sustained high-performance regime, combining discrete edge and core transport barriers, has been discovered in the DIII-D tokamak. Edge localized modes (ELMs) are replaced by a steady oscillation that increases edge particle transport, thereby allowing particle control with no ELM-induced pulsed divertor heat load. The core barrier resembles those usually seen with a low (L) mode edge, without the degradation often associated with ELMs. The barriers are separated by a narrow region of high transport associated with a zero crossing in the E x B shearing rate.

10.
Phys Rev Lett ; 86(5): 814-7, 2001 Jan 29.
Article in English | MEDLINE | ID: mdl-11177947

ABSTRACT

The GLF23 transport model is used to dynamically follow bifurcations in the energy and toroidal momentum confinement in DIII-D discharges with an internal transport barrier. The temperatures and toroidal velocity profiles are evolved while self-consistently computing the effects of E x B shear stabilization during the formation and expansion of internal transport barriers. The barrier is predicted to form in a stepwise fashion through a series of sudden jumps in the core-electron and ion temperatures and toroidal rotation velocity. These results are consistent with experimental observations. In the simulations, the step transitions are a direct result of local E x B driven transport bifurcations.

11.
Phys Rev Lett ; 84(9): 1922-5, 2000 Feb 28.
Article in English | MEDLINE | ID: mdl-11017661

ABSTRACT

Turbulence is significantly reduced in a tokamak plasma as a result of neon seeding of an L-mode discharge. Correspondingly, confinement is improved and cross-field ion thermal transport reduced. Fully saturated turbulence in the range 0.10.35. These observations are consistent with a reduction in the calculated linear growth rate for k( perpendicular)rho(s)>0.5 and an increase in the measured ExB flow shearing rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...