Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39011116

ABSTRACT

Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their 'volume transmission' output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity.

2.
Hum Genet ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085601

ABSTRACT

As the adoption and scope of genetic testing continue to expand, interpreting the clinical significance of DNA sequence variants at scale remains a formidable challenge, with a high proportion classified as variants of uncertain significance (VUSs). Genetic testing laboratories have historically relied, in part, on functional data from academic literature to support variant classification. High-throughput functional assays or multiplex assays of variant effect (MAVEs), designed to assess the effects of DNA variants on protein stability and function, represent an important and increasingly available source of evidence for variant classification, but their potential is just beginning to be realized in clinical lab settings. Here, we describe a framework for generating, validating and incorporating data from MAVEs into a semi-quantitative variant classification method applied to clinical genetic testing. Using single-cell gene expression measurements, cellular evidence models were built to assess the effects of DNA variation in 44 genes of clinical interest. This framework was also applied to models for an additional 22 genes with previously published MAVE datasets. In total, modeling data was incorporated from 24 genes into our variant classification method. These data contributed evidence for classifying 4043 observed variants in over 57,000 individuals. Genetic testing laboratories are uniquely positioned to generate, analyze, validate, and incorporate evidence from high-throughput functional data and ultimately enable the use of these data to provide definitive clinical variant classifications for more patients.

3.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38915722

ABSTRACT

The mammalian cortex is comprised of cells with different morphological, physiological, and molecular properties that can be classified according to shared properties into cell types. Defining the contribution of each cell type to the computational and cognitive processes that are guided by the cortex is essential for understanding its function in health and disease. We use transcriptomic and epigenomic cortical cell type taxonomies from mice and humans to define marker genes and enhancers, and to build genetic tools for cortical cell types. Here, we present a large toolkit for selective targeting of cortical populations, including mouse transgenic lines and recombinant adeno-associated virus (AAV) vectors containing genomic enhancers. We report evaluation of fifteen new transgenic driver lines and over 680 different enhancer AAVs covering all major subclasses of cortical cells, with many achieving a high degree of specificity, comparable with existing transgenic lines. We find that the transgenic lines based on marker genes can provide exceptional specificity and completeness of cell type labeling, but frequently require generation of a triple-transgenic cross for best usability/specificity. On the other hand, enhancer AAVs are easy to screen and use, and can be easily modified to express diverse cargo, such as recombinases. However, their use depends on many factors, such as viral titer and route of administration. The tools reported here as well as the scaled process of tool creation provide an unprecedented resource that should enable diverse experimental strategies towards understanding mammalian cortex and brain function.

4.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38895403

ABSTRACT

Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their "volume transmission" output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity.

5.
Neuron ; 111(17): 2675-2692.e9, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37390821

ABSTRACT

The cardinal classes are a useful simplification of cortical interneuron diversity, but such broad subgroupings gloss over the molecular, morphological, and circuit specificity of interneuron subtypes, most notably among the somatostatin interneuron class. Although there is evidence that this diversity is functionally relevant, the circuit implications of this diversity are unknown. To address this knowledge gap, we designed a series of genetic strategies to target the breadth of somatostatin interneuron subtypes and found that each subtype possesses a unique laminar organization and stereotyped axonal projection pattern. Using these strategies, we examined the afferent and efferent connectivity of three subtypes (two Martinotti and one non-Martinotti) and demonstrated that they possess selective connectivity with intratelecephalic or pyramidal tract neurons. Even when two subtypes targeted the same pyramidal cell type, their synaptic targeting proved selective for particular dendritic compartments. We thus provide evidence that subtypes of somatostatin interneurons form cell-type-specific cortical circuits.


Subject(s)
Interneurons , Neurons , Interneurons/physiology , Neurons/physiology , Pyramidal Cells/physiology , Axons/metabolism , Somatostatin/metabolism , Parvalbumins/metabolism
6.
J Fish Biol ; 102(4): 952-961, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36752196

ABSTRACT

Viviparous rockfishes (Sebastes spp., family Scorpaenidae) mate and store sperm in the ovaries for several months prior to fertilization, as oocytes develop for the parturition season. Although multiple paternity has been documented in single-brooding rockfishes, paternity in consecutive broods of multiple-brooding species has not been studied. Analyses of multilocus microsatellite genotypes in both residual larvae left in the ovary from a previous parturition and upcoming fertilized broods in the same ovary demonstrated evidence of the same sires in consecutive broods in chilipepper (Sebastes goodei) and speckled (Sebastes ovalis) rockfishes. One S. goodei mother showed evidence of multiple paternity from the same two sires in both consecutive broods. The ability to retain sperm, even after a parturition event, for use in subsequent broods, confers an advantage to ensure fertilization and allows for extension of the parturition season. This life-history strategy provides a bet-hedging advantage in the California Current system, an environmentally dynamic ecosystem where larval survivorship and subsequent recruitment to adult populations can vary temporally by orders of magnitude.


Subject(s)
Bass , Perciformes , Female , Male , Animals , Ecosystem , Semen , Fertilization , Spermatozoa , Perciformes/genetics , Bass/genetics , Larva/genetics , Microsatellite Repeats
7.
Cell Rep ; 35(6): 109123, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979604

ABSTRACT

Dopaminergic projections exert widespread influence over multiple brain regions and modulate various behaviors including movement, reward learning, and motivation. It is increasingly appreciated that dopamine neurons are heterogeneous in their gene expression, circuitry, physiology, and function. Current approaches to target dopamine neurons are largely based on single gene drivers, which either label all dopamine neurons or mark a subset but concurrently label non-dopaminergic neurons. Here, we establish a mouse line with Flpo recombinase expressed from the endogenous Slc6a3 (dopamine active transporter [DAT]) locus. DAT-P2A-Flpo mice can be used together with Cre-expressing mouse lines to efficiently and selectively label dopaminergic subpopulations using Cre/Flp-dependent intersectional strategies. We demonstrate the utility of this approach by generating DAT-P2A-Flpo;NEX-Cre mice that specifically label Neurod6-expressing dopamine neurons, which project to the nucleus accumbens medial shell. DAT-P2A-Flpo mice add to a growing toolbox of genetic resources that will help parse the diverse functions mediated by dopaminergic circuits.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Animals , Cell Line , Humans , Mice
8.
Proc Biol Sci ; 287(1937): 20201550, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33081621

ABSTRACT

A warming climate poses a fundamental problem for embryos that develop within eggs because their demand for oxygen (O2) increases much more rapidly with temperature than their capacity for supply, which is constrained by diffusion across the egg surface. Thus, as temperatures rise, eggs may experience O2 limitation due to an imbalance between O2 supply and demand. Here, we formulate a mathematical model of O2 limitation and experimentally test whether this mechanism underlies the upper thermal tolerance in large aquatic eggs. Using Chinook salmon (Oncorhynchus tshawytscha) as a model system, we show that the thermal tolerance of eggs varies systematically with features of the organism and environment. Importantly, this variation can be precisely predicted by the degree to which these features shift the balance between O2 supply and demand. Equipped with this mechanistic understanding, we predict and experimentally confirm that the thermal tolerance of these embryos in their natural habitat is substantially lower than expected from laboratory experiments performed under normoxia. More broadly, our biophysical model of O2 limitation provides a mechanistic explanation for the elevated thermal sensitivity of fish embryos relative to other life stages, global patterns in egg size and the extreme fecundity of large teleosts.


Subject(s)
Ovum/physiology , Salmon/physiology , Thermotolerance/physiology , Animals , Climate , Fishes , Oxygen , Temperature
9.
Nature ; 588(7836): 112-117, 2020 12.
Article in English | MEDLINE | ID: mdl-33057193

ABSTRACT

Fluid intake is an essential innate behaviour that is mainly caused by two distinct types of thirst1-3. Increased blood osmolality induces osmotic thirst that drives animals to consume pure water. Conversely, the loss of body fluid induces hypovolaemic thirst, in which animals seek both water and minerals (salts) to recover blood volume. Circumventricular organs in the lamina terminalis are critical sites for sensing both types of thirst-inducing stimulus4-6. However, how different thirst modalities are encoded in the brain remains unknown. Here we employed stimulus-to-cell-type mapping using single-cell RNA sequencing to identify the cellular substrates that underlie distinct types of thirst. These studies revealed diverse types of excitatory and inhibitory neuron in each circumventricular organ structure. We show that unique combinations of these neuron types are activated under osmotic and hypovolaemic stresses. These results elucidate the cellular logic that underlies distinct thirst modalities. Furthermore, optogenetic gain of function in thirst-modality-specific cell types recapitulated water-specific and non-specific fluid appetite caused by the two distinct dipsogenic stimuli. Together, these results show that thirst is a multimodal physiological state, and that different thirst states are mediated by specific neuron types in the mammalian brain.


Subject(s)
Neurons/classification , Neurons/physiology , Thirst/physiology , Animals , Base Sequence , Drinking/physiology , Female , Hypovolemia/prevention & control , Male , Mice , Mice, Inbred C57BL , Models, Animal , Organum Vasculosum/cytology , Organum Vasculosum/physiology , Osmotic Pressure , Single-Cell Analysis , Subfornical Organ/cytology , Subfornical Organ/physiology , Water Deprivation
10.
Glob Chang Biol ; 26(6): 3498-3511, 2020 06.
Article in English | MEDLINE | ID: mdl-32153086

ABSTRACT

Forecasts from climate models and oceanographic observations indicate increasing deoxygenation in the global oceans and an elevated frequency and intensity of hypoxic events in the coastal zone, which have the potential to affect marine biodiversity and fisheries. Exposure to low dissolved oxygen (DO) conditions may have deleterious effects on early life stages in fishes. This study aims to identify thresholds to hypoxia while testing behavioral and physiological responses of two congeneric species of kelp forest fish to four DO levels, ranging from normoxic to hypoxic (8.7, 6.0, 4.1, and 2.2 mg O2 /L). Behavioral tests identified changes in exploratory behavior and turning bias (lateralization), whereas physiological tests focused on determining changes in hypoxia tolerance (pCrit), ventilation rates, and metabolic rates, with impacts on the resulting capacity for aerobic activity. Our findings indicated that copper rockfish (Sebastes caurinus) and blue rockfish (Sebastes mystinus) express sensitivity to hypoxia; however, the strength of the response differed between species. Copper rockfish exhibited reduced absolute lateralization and increased escape time at the lowest DO levels, whereas behavioral metrics for blue rockfish did not vary with oxygen level. Both species exhibited decreases in aerobic scope (as a function of reduced maximum metabolic rate) and increases in ventilation rates to compensate for decreasing oxygen levels. Blue rockfish had a lower pCrit and stronger acclimation response compared to copper rockfish. The differences expressed by each species suggest that acclimatization to changing ocean conditions may vary, even among related species that recruit to the same kelp forest habitat, leading to winners and losers under future ocean conditions. Exposure to hypoxia can decrease individual physiological fitness through metabolic and aerobic depression and changes to anti-predator behavior, with implications for the outcome of ecological interactions and the management of fish stocks in the face of climate change.


Subject(s)
Kelp , Animals , Fishes , Forests , Hypoxia , Oceans and Seas
11.
Pest Manag Sci ; 76(10): 3440-3450, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31943711

ABSTRACT

BACKGROUND: Crop protection solutions for the control of key economic sucking pests derive essentially from neuronal and muscular acting chemistries, wherein neonicotinoid uses largely dominated for the last two decades. Anticipating likely resistance development of some of those arthropod species to this particular class, we intensified research activities on a non-neuronal site of action targeting insect growth and development some 10 years ago. RESULTS: Our innovation path featured reactivation of a scarcely used and simple building block from the 1960s, namely N-methoxy-4-piperidone 3. Its judicious incorporation into the 2-aryl-1,3-dione scaffold of IRAC group 23 inhibitors of fatty acid biosynthesis resulted in novel tetramic acid derivatives acting on acetyl-coenzyme A carboxylase (ACCase). The optimization campaign focused on modulation of the aryl substitution pattern and understanding substituent options at the lactam nitrogen position of those spiroheterocyclic pyrrolidine-dione derivatives towards an effective control of sucking insects and mites. This work gratifyingly culminated in the discovery of spiro N-methoxy piperidine containing proinsecticide spiropidion 1. Following in planta release, its insecticidally active dione metabolite 2 is translaminar and two-way systemic (both xylem and phloem mobile) for a full plant protection against arthropod pests. CONCLUSION: Owing to such unique plant systemic properties, growing shoots and roots actually not directly exposed to spiropidion-based chemistry after foliar application nevertheless benefit from its long-lasting efficacy. Spiropidion is for use in field crops, speciality crops and vegetables controlling a broad range of sucking pests. In light of other performance and safety profiles of spiropidion, an IPM fit may be expected. © 2020 Society of Chemical Industry.


Subject(s)
Mites , Animals , Crops, Agricultural , Piperidines
12.
Genome Res ; 29(4): 635-645, 2019 04.
Article in English | MEDLINE | ID: mdl-30894395

ABSTRACT

Large-scale population analyses coupled with advances in technology have demonstrated that the human genome is more diverse than originally thought. To date, this diversity has largely been uncovered using short-read whole-genome sequencing. However, these short-read approaches fail to give a complete picture of a genome. They struggle to identify structural events, cannot access repetitive regions, and fail to resolve the human genome into haplotypes. Here, we describe an approach that retains long range information while maintaining the advantages of short reads. Starting from ∼1 ng of high molecular weight DNA, we produce barcoded short-read libraries. Novel informatic approaches allow for the barcoded short reads to be associated with their original long molecules producing a novel data type known as "Linked-Reads". This approach allows for simultaneous detection of small and large variants from a single library. In this manuscript, we show the advantages of Linked-Reads over standard short-read approaches for reference-based analysis. Linked-Reads allow mapping to 38 Mb of sequence not accessible to short reads, adding sequence in 423 difficult-to-sequence genes including disease-relevant genes STRC, SMN1, and SMN2 Both Linked-Read whole-genome and whole-exome sequencing identify complex structural variations, including balanced events and single exon deletions and duplications. Further, Linked-Reads extend the region of high-confidence calls by 68.9 Mb. The data presented here show that Linked-Reads provide a scalable approach for comprehensive genome analysis that is not possible using short reads alone.


Subject(s)
Genome-Wide Association Study/methods , Polymorphism, Genetic , Whole Genome Sequencing/methods , Cell Line , Genome, Human , Humans , Intercellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
13.
Elife ; 82019 03 18.
Article in English | MEDLINE | ID: mdl-30883329

ABSTRACT

The neocortex is functionally organized into layers. Layer four receives the densest bottom up sensory inputs, while layers 2/3 and 5 receive top down inputs that may convey predictive information. A subset of cortical somatostatin (SST) neurons, the Martinotti cells, gate top down input by inhibiting the apical dendrites of pyramidal cells in layers 2/3 and 5, but it is unknown whether an analogous inhibitory mechanism controls activity in layer 4. Using high precision circuit mapping, in vivo optogenetic perturbations, and single cell transcriptional profiling, we reveal complementary circuits in the mouse barrel cortex involving genetically distinct SST subtypes that specifically and reciprocally interconnect with excitatory cells in different layers: Martinotti cells connect with layers 2/3 and 5, whereas non-Martinotti cells connect with layer 4. By enforcing layer-specific inhibition, these parallel SST subnetworks could independently regulate the balance between bottom up and top down input.


Subject(s)
Interneurons/physiology , Neocortex/cytology , Neocortex/physiology , Nerve Net/cytology , Nerve Net/physiology , Pyramidal Cells/physiology , Somatostatin/metabolism , Animals , Gene Expression Profiling , Mice , Optogenetics
14.
PLoS Biol ; 17(2): e3000153, 2019 02.
Article in English | MEDLINE | ID: mdl-30807574

ABSTRACT

The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Mesoderm/metabolism , Muscle Cells/metabolism , Muscle Development/genetics , PAX3 Transcription Factor/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cell Line , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Humans , Mesoderm/cytology , Mesoderm/growth & development , Mice , Mice, Transgenic , Muscle Cells/cytology , Muscle, Skeletal/cytology , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , PAX3 Transcription Factor/metabolism , Signal Transduction , T-Box Domain Proteins , TEA Domain Transcription Factors , Trans-Activators/metabolism , Transcription Factors/metabolism
15.
Proc Natl Acad Sci U S A ; 114(1): 101-106, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27986952

ABSTRACT

To define a complete catalog of the genes that are activated during mouse sclerotome formation, we sequenced RNA from embryonic mouse tissue directed to form sclerotome in culture. In addition to well-known early markers of sclerotome, such as Pax1, Pax9, and the Bapx2/Nkx3-2 homolog Nkx3-1, the long-noncoding RNA PEAT (Pax1 enhancer antisense transcript) was induced in sclerotome-directed samples. Strikingly, PEAT is located just upstream of the Pax1 gene. Using CRISPR/Cas9, we generated a mouse line bearing a complete deletion of the PEAT-transcribed unit. RNA-seq on PEAT mutant embryos showed that loss of PEAT modestly increases bone morphogenetic protein target gene expression and also elevates the expression of a large subset of ribosomal protein mRNAs.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Paired Box Transcription Factors/genetics , RNA, Long Noncoding/genetics , RNA, Ribosomal/biosynthesis , Ribosomal Proteins/biosynthesis , Animals , Bone Morphogenetic Proteins/biosynthesis , CRISPR-Cas Systems/genetics , Mesoderm/embryology , Mice , Mice, Inbred C57BL , Mice, Knockout , Paired Box Transcription Factors/biosynthesis , Ribosomal Proteins/genetics , Sequence Deletion/genetics
16.
Nat Biotechnol ; 34(3): 303-11, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26829319

ABSTRACT

Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4-ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants.


Subject(s)
Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , DNA/genetics , Genome, Human , Genomic Structural Variation , Germ Cells , Humans , Nucleic Acid Conformation , Oncogene Proteins, Fusion/genetics , Polymorphism, Single Nucleotide
17.
Mech Dev ; 131: 78-85, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24514266

ABSTRACT

When compared to single mutants for Follistatin or Noggin, we find that double mutants display a dramatic further reduction in trunk cartilage formation, particularly in the vertebral bodies and proximal ribs. Consistent with these observations, expression of the early sclerotome markers Pax1 and Uncx is diminished in Noggin;Follistatin compound mutants. In contrast, Sim1 expression expands medially in double mutants. As the onset of Follistatin expression coincides with sclerotome specification, we argue that the effect of Follistatin occurs after sclerotome induction. We hypothesize that Follistatin aids in maintaining proper somite size, and consequently sclerotome progenitor numbers, by preventing paraxial mesoderm from adopting an intermediate/lateral plate mesodermal fate in the Noggin-deficient state.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Carrier Proteins/genetics , Cartilage/growth & development , Follistatin/genetics , Repressor Proteins/biosynthesis , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Body Patterning/genetics , Bone Morphogenetic Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Female , Follistatin/metabolism , Gene Expression Regulation, Developmental , Mice , Mutation , Repressor Proteins/genetics , Somites/growth & development , Somites/metabolism , Spine/growth & development , Spine/metabolism
18.
Development ; 138(5): 1005-14, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21303853

ABSTRACT

Inductive signals from adjacent tissues initiate differentiation within the somite. In this study, we used mouse embryos mutant for the BMP antagonists noggin (Nog) and gremlin 1 (Grem1) to characterize the effects of BMP signaling on the specification of the sclerotome. We confirmed reduction of Pax1 and Pax9 expression in Nog mutants, but found that Nog;Grem1 double mutants completely fail to initiate sclerotome development. Furthermore, Nog mutants that also lack one allele of Grem1 exhibit a dramatic reduction in axial skeleton relative to animals mutant for Nog alone. By contrast, Pax3, Myf5 and Lbx1 expression indicates that dermomyotome induction occurs in Nog;Grem1 double mutants. Neither conditional Bmpr1a mutation nor treatment with the BMP type I receptor inhibitor dorsomorphin expands sclerotome marker expression, suggesting that BMP antagonists do not have an instructive function in sclerotome specification. Instead, we hypothesize that Nog- and Grem1-mediated inhibition of BMP is permissive for hedgehog (Hh) signal-mediated sclerotome specification. In support of this model, we found that culturing Nog;Grem1 double-mutant embryos with dorsomorphin restores sclerotome, whereas Pax1 expression in smoothened (Smo) mutants is not rescued, suggesting that inhibition of BMP is insufficient to induce sclerotome in the absence of Hh signaling. Confirming the dominant inhibitory effect of BMP signaling, Pax1 expression cannot be rescued in Nog;Grem1 double mutants by forced activation of Smo. We conclude that Nog and Grem1 cooperate to maintain a BMP signaling-free zone that is a crucial prerequisite for Hh-mediated sclerotome induction.


Subject(s)
Carrier Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Skeleton , Somites/embryology , Animals , Body Patterning/genetics , Bone Morphogenetic Proteins/antagonists & inhibitors , Embryo, Mammalian , Hedgehog Proteins/metabolism , Mice , Mice, Mutant Strains , Signal Transduction
19.
Proc Biol Sci ; 278(1706): 718-24, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-20843847

ABSTRACT

Indirect competition is often mediated by plant responses to herbivore feeding damage and is common among phytophagous insect species. Plant-mediated responses may be altered by abiotic conditions such as nutrient supply, which can affect plant growth, morphology, and the concentration of primary and secondary metabolites. Nutrient supply can be manipulated by the type and amount of fertilizer applied to a plant. Brassica oleracea plants were grown in several types of fertilizer, including those commonly used in sustainable and conventional agricultural systems. The occurrence of indirect competition between two phytophagous species from different feeding guilds (a phloem-feeder and leaf-chewer) was assessed. The leaf-chewer reduced aphid populations on plants growing in most fertilizer treatments, but not on those in the ammonium nitrate fertilizer treatment, which caused the highest concentration of foliar nitrogen. The potential consequences of our findings are discussed for phytophagous species in conventional and sustainable agricultural systems.


Subject(s)
Brassica/physiology , Brassica/parasitology , Competitive Behavior/physiology , Feeding Behavior/physiology , Insecta/physiology , Animals , Biomass , Nutritive Value
20.
J Neurosci ; 28(20): 5229-39, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18480279

ABSTRACT

Illuminating the molecular identity and regulation of early progenitor cells in the olfactory sensory epithelium represents an important challenge in the field of neural development. We show in both mouse and zebrafish that the winged helix transcription factor Foxg1 is expressed in an early progenitor population of the olfactory placode. In the mouse, Foxg1 is first expressed throughout the olfactory placode but later becomes restricted to the ventrolateral olfactory epithelium. The essential role of Foxg1 in olfactory development is demonstrated by the strikingly severe phenotype of Foxg1 knock-out mice: older embryos have no recognizable olfactory structures, including epithelium, bulb, or vomeronasal organs. Initially, a small number of olfactory progenitors are specified but show defects in both proliferation and differentiation. Similarly, antisense RNA knockdown of Foxg1 expression in the zebrafish shows a reduction in the number of neurons and mitotic cells in olfactory rosettes, mirroring the phenotype seen in the mouse Foxg1 null mutant. Using mosaic analysis in the zebrafish, we show that Foxg1 is required cell-autonomously for the production of mature olfactory receptor neurons. Therefore, we identified an evolutionarily conserved requirement for Foxg1 in the development of the vertebrate olfactory system.


Subject(s)
Forkhead Transcription Factors/genetics , Gene Expression Regulation, Developmental/genetics , Nerve Tissue Proteins/genetics , Olfactory Mucosa/embryology , Olfactory Mucosa/metabolism , Olfactory Pathways/embryology , Olfactory Pathways/metabolism , Zebrafish Proteins/genetics , Animals , Cell Differentiation/genetics , Down-Regulation/genetics , Evolution, Molecular , Mice , Mice, Knockout , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Oligonucleotides, Antisense/genetics , Species Specificity , Stem Cells/cytology , Stem Cells/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL