Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
iScience ; 25(1): 103559, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34988402

ABSTRACT

The extinct Gomphotheriidae is the only proboscidean family that colonized South America. The phylogenetic position of the endemic taxa has been through several revisions using morphological comparisons. Morphological studies are enhanced by paleogenetic analyses, a powerful tool to resolve phylogenetic relationships; however, ancient DNA (aDNA) preservation decreases in warmer regions. Despite the poor preservation conditions for aDNA in humid, sub-tropical climates, we recovered ∼3,000 bp of mtDNA of Notiomastodon platensis from the Arroyo del Vizcaíno site, Uruguay. Our calibrated phylogeny places Notiomastodon as a sister taxon to Elephantidae, with a divergence time of ∼13.5 Ma. Additionally, a total evidence analysis combining morphological and paleogenetic data shows that the three most diverse clades within Proboscidea diverged during the early Miocene, coinciding with the formation of a land passage between Africa and Eurasia. Our results are a further step toward aDNA analyses on Pleistocene samples from subtropical regions and provide a framework for proboscidean evolution.

2.
Ecol Evol ; 12(8): e9238, 2022 Aug.
Article in English | MEDLINE | ID: mdl-37265549

ABSTRACT

The Chauvet-Pont-d'Arc Cave (Ardèche, France) contains some of the oldest Paleolithic paintings recorded to date, as well as thousands of bones of the extinct cave bear, and some remains and footprints of other animals. As part of the interdisciplinary research project devoted to this reference cave site, we analyzed a coprolite collected within the deep cave. AMS radiocarbon dating of bone fragments from the coprolite yielded an age of 30,450 ± 550 RC yr. BP (AAR-19656; 36,150-34,000 cal BP), similar to ages assigned to Paleolithic artwork and cave bear remains from the same cave sector. Using high-throughput shotgun DNA sequencing, we demonstrated a high abundance of canid DNA and lesser amounts of DNA from the extinct cave bear. We interpret the sample as feces from a canid that had consumed cave bear tissue. The high amount of canid DNA allowed us to reconstruct a complete canid mitochondrial genome sequence (average coverage: 83×) belonging to a deeply divergent clade of extinct mitochondrial wolf lineages that are most closely related to coeval (~35 ka) Belgian wolves. Analysis of the nuclear genome yielded a similar coverage for the X chromosome (2.4×) and the autosomes (range: 2.3-3.2×), indicating that the Chauvet canid was a female. Comparing the relationship of the nuclear genome of this specimen with that of a variety of canids, we found it more closely related to gray wolves' genomes than to other wild canid or dog genomes, especially wolf genomes from Europe and the Middle East. We conclude that the coprolite is feces from an animal within an extinct wolf lineage. The consumption of cave bear by this wolf likely explains its intrusion into the dark cave sectors and sheds new light on the paleoecology of a major cave site.

3.
Sci Adv ; 6(43)2020 10.
Article in English | MEDLINE | ID: mdl-33087355

ABSTRACT

Thirty-two radiocarbon ages on bone, charcoal, and carbonized plant remains from 10 Clovis sites range from 11,110 ± 40 to 10,820 ± 10 14C years before the present (yr B.P.). These radiocarbon ages provide a maximum calibrated (cal) age range for Clovis of ~13,050 to ~12,750 cal yr B.P. This radiocarbon record suggests that Clovis first appeared at the end of the Allerød and is one of at least three contemporary archaeological complexes in the Western Hemisphere during the terminal Pleistocene. Stemmed projectile points in western North America are coeval and even older than Clovis, and the Fishtail point complex is well established in the southern cone of South America by ~12,900 cal yr B.P. Clovis disappeared ~12,750 cal yr B.P. at the beginning of the Younger Dryas, coincident with the extinction of the remaining North American megafauna (Proboscideans) and the appearance of multiple North American regional archaeological complexes.

4.
Nat Commun ; 11(1): 2770, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488006

ABSTRACT

Large-scale changes in global climate at the end of the Pleistocene significantly impacted ecosystems across North America. However, the pace and scale of biotic turnover in response to both the Younger Dryas cold period and subsequent Holocene rapid warming have been challenging to assess because of the scarcity of well dated fossil and pollen records that covers this period. Here we present an ancient DNA record from Hall's Cave, Texas, that documents 100 vertebrate and 45 plant taxa from bulk fossils and sediment. We show that local plant and animal diversity dropped markedly during Younger Dryas cooling, but while plant diversity recovered in the early Holocene, animal diversity did not. Instead, five extant and nine extinct large bodied animals disappeared from the region at the end of the Pleistocene. Our findings suggest that climate change affected the local ecosystem in Texas over the Pleistocene-Holocene boundary, but climate change on its own may not explain the disappearance of the megafauna at the end of the Pleistocene.


Subject(s)
Climate Change , Ecosystem , Extinction, Biological , Animals , Biodiversity , Fossils , High-Throughput Nucleotide Sequencing , Paleontology , Plants/genetics , Sequence Analysis , Texas
5.
Nature ; 574(7776): 103-107, 2019 10.
Article in English | MEDLINE | ID: mdl-31511700

ABSTRACT

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.


Subject(s)
DNA, Ancient/analysis , Dental Enamel/metabolism , Fossils , Perissodactyla/classification , Perissodactyla/genetics , Phylogeny , Proteome/genetics , Proteomics , Amino Acid Motifs , Amino Acid Sequence , Animals , Bayes Theorem , History, Ancient , Humans , Male , Perissodactyla/metabolism , Phosphorylation/genetics , Proteome/analysis
6.
Sci Adv ; 5(3): eaau4546, 2019 03.
Article in English | MEDLINE | ID: mdl-30854426

ABSTRACT

The extinction of Pleistocene megafauna and the role played by humans have been subjects of constant debate in American archeology. Previous evidence from the Pampas region of Argentina suggested that this environment might have provided a refugium for the Holocene survival of several megamammals. However, recent excavations and more advanced accelerator mass spectrometry radiocarbon dating at Campo Laborde site in the Argentinian Pampas challenge the Holocene survival of Pleistocene megamammals and provide original and high-quality information documenting direct human impact on the Pleistocene fauna. The new data offer definitive evidence for hunting and butchering of Megatherium americanum (giant ground sloth) at 12,600 cal years BP and dispute previous interpretations that Pleistocene megamammals survived into the Holocene in the Pampas.


Subject(s)
Archaeology , Fossils , Sloths , Animals , Geography , Humans , Radiometric Dating , South Africa
7.
Proc Natl Acad Sci U S A ; 115(27): 7000-7003, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29915063

ABSTRACT

Found in 1968, the archaeological site of Anzick, Montana, contains the only known Clovis burial. Here, the partial remains of a male infant, Anzick-1, were found in association with a Clovis assemblage of over 100 lithic and osseous artifacts-all red-stained with ochre. The incomplete, unstained cranium of an unassociated, geologically younger individual, Anzick-2, was also recovered. Previous chronometric work has shown an age difference between Anzick-1 and the Clovis assemblage (represented by dates from two antler rod samples). This discrepancy has led to much speculation, with some discounting Anzick-1 as Clovis. To resolve this issue, we present the results of a comprehensive radiocarbon dating program that utilized different pretreatment methods on osseous material from the site. Through this comparative approach, we obtained a robust chronometric dataset that suggests that Anzick-1 is temporally coeval with the dated antler rods. This implies that the individual is indeed temporally associated with the Clovis assemblage.


Subject(s)
Anthropology, Cultural , Databases, Factual , Indians, North American , Chronology as Topic , Female , History, Ancient , Humans , Male , Montana
8.
BMC Evol Biol ; 17(1): 48, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28187706

ABSTRACT

BACKGROUND: The European bison (Bison bonasus), now found in Europe and the Caucasus, has been proposed to originate either from the extinct steppe/extant American bison lineage or from the extinct Bison schoetensacki lineage. Bison schoetensacki remains are documented in Eurasian Middle Pleistocene sites, but their presence in Upper Pleistocene sites has been questioned. Despite extensive genetic studies carried out on the steppe and European bison, no remains from the fossil record morphologically identified as Bison schoetensacki has been analyzed up to now. RESULTS: In this paper, we analyzed a 36,000-year-old Bison schoetensaki bone sample from the Siréjol cave (France) and a cave hyena coprolite (fossilized feces) found in a nearby cave and containing large amounts of Bovinae DNA. We show that the Bovinae mitochondrial DNA sequences from both samples, including a complete mitochondrial genome sequence, belong to a clade recently reported in the literature. This clade only includes ancient bison specimens without taxonomic identification and displays a sister relationship with the extant European bison. The genetic proximity of Bison schoetensacki with specimens from this clade is corroborated by the analysis of nuclear DNA single nucleotide polymorphisms. CONCLUSIONS: This work provides genetic evidence supporting the continuing presence of Bison schoetensacki up to the Upper Pleistocene. Bison schoetensacki turns out to be a sister species of Bison bonasus, excluding the steppe bison Bison priscus as a direct ancestor of the European bison.


Subject(s)
Bison/genetics , Fossils , Animals , Caves , DNA, Mitochondrial/genetics , Europe , France , Genome, Mitochondrial , Phylogeny , Sequence Analysis, DNA
9.
Sci Adv ; 2(5): e1600375, 2016 05.
Article in English | MEDLINE | ID: mdl-27386553

ABSTRACT

Stone tools and mastodon bones occur in an undisturbed geological context at the Page-Ladson site, Florida. Seventy-one radiocarbon ages show that ~14,550 calendar years ago (cal yr B.P.), people butchered or scavenged a mastodon next to a pond in a bedrock sinkhole within the Aucilla River. This occupation surface was buried by ~4 m of sediment during the late Pleistocene marine transgression, which also left the site submerged. Sporormiella and other proxy evidence from the sediments indicate that hunter-gatherers along the Gulf Coastal Plain coexisted with and utilized megafauna for ~2000 years before these animals became extinct at ~12,600 cal yr B.P. Page-Ladson expands our understanding of the earliest colonizers of the Americas and human-megafauna interaction before extinction.


Subject(s)
Archaeology , Fossils , Animals , Extinction, Biological , Florida , Geography , History, Ancient , Humans , Population Dynamics , Radiometric Dating
10.
Sci Rep ; 5: 11826, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26134828

ABSTRACT

The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.


Subject(s)
DNA Methylation/genetics , DNA/genetics , Mammoths/genetics , Ursidae/genetics , Animals , DNA/isolation & purification , Fossils
11.
Proc Natl Acad Sci U S A ; 112(32): E4344-53, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26216981

ABSTRACT

The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835-12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (∼ 100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer.

12.
Science ; 349(6250): aab3884, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26198033

ABSTRACT

How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.


Subject(s)
Human Migration/history , Indians, North American/history , Americas , Gene Flow , Genomics , History, Ancient , Humans , Indians, North American/genetics , Models, Genetic , Siberia
13.
PLoS One ; 10(6): e0128267, 2015.
Article in English | MEDLINE | ID: mdl-26083419

ABSTRACT

Despite the abundance of fossil remains for the extinct steppe bison (Bison priscus), an animal that was painted and engraved in numerous European Paleolithic caves, a complete mitochondrial genome sequence has never been obtained for this species. In the present study we collected bone samples from a sector of the Trois-Frères Paleolithic cave (Ariège, France) that formerly functioned as a pitfall and was sealed before the end of the Pleistocene. Screening the DNA content of the samples collected from the ground surface revealed their contamination by Bos DNA. However, a 19,000-year-old rib collected on a rock apart the pathway delineated for modern visitors was devoid of such contaminants and reproducibly yielded Bison priscus DNA. High-throughput shotgun sequencing combined with conventional PCR analysis of the rib DNA extract enabled to reconstruct a complete mitochondrial genome sequence of 16,318 bp for the extinct steppe bison with a 10.4-fold coverage. Phylogenetic analyses robustly established the position of the Bison priscus mitochondrial genome as basal to the clade delineated by the genomes of the modern American Bison bison. The extinct steppe bison sequence, which exhibits 93 specific polymorphisms as compared to the published Bison bison mitochondrial genomes, provides an additional resource for the study of Bovinae specimens. Moreover this study of ancient DNA delineates a new research pathway for the analysis of the Magdalenian Trois-Frères cave.


Subject(s)
Bison/genetics , Genome, Mitochondrial , Animals , Bison/classification , Bone and Bones/metabolism , Carbon Radioisotopes/chemistry , Caves , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Extinction, Biological , Fossils , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA
14.
Nature ; 523(7561): 455-458, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26087396

ABSTRACT

Kennewick Man, referred to as the Ancient One by Native Americans, is a male human skeleton discovered in Washington state (USA) in 1996 and initially radiocarbon dated to 8,340-9,200 calibrated years before present (BP). His population affinities have been the subject of scientific debate and legal controversy. Based on an initial study of cranial morphology it was asserted that Kennewick Man was neither Native American nor closely related to the claimant Plateau tribes of the Pacific Northwest, who claimed ancestral relationship and requested repatriation under the Native American Graves Protection and Repatriation Act (NAGPRA). The morphological analysis was important to judicial decisions that Kennewick Man was not Native American and that therefore NAGPRA did not apply. Instead of repatriation, additional studies of the remains were permitted. Subsequent craniometric analysis affirmed Kennewick Man to be more closely related to circumpacific groups such as the Ainu and Polynesians than he is to modern Native Americans. In order to resolve Kennewick Man's ancestry and affiliations, we have sequenced his genome to ∼1× coverage and compared it to worldwide genomic data including for the Ainu and Polynesians. We find that Kennewick Man is closer to modern Native Americans than to any other population worldwide. Among the Native American groups for whom genome-wide data are available for comparison, several seem to be descended from a population closely related to that of Kennewick Man, including the Confederated Tribes of the Colville Reservation (Colville), one of the five tribes claiming Kennewick Man. We revisit the cranial analyses and find that, as opposed to genome-wide comparisons, it is not possible on that basis to affiliate Kennewick Man to specific contemporary groups. We therefore conclude based on genetic comparisons that Kennewick Man shows continuity with Native North Americans over at least the last eight millennia.


Subject(s)
Indians, North American/genetics , Phylogeny , Skeleton , Americas , Genome, Human/genetics , Genomics , Humans , Male , Skull/anatomy & histology , Washington
15.
Proc Natl Acad Sci U S A ; 112(14): 4263-7, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25831543

ABSTRACT

The only certain evidence for prehistoric human hunting of horse and camel in North America occurs at the Wally's Beach site, Canada. Here, the butchered remains of seven horses and one camel are associated with 29 nondiagnostic lithic artifacts. Twenty-seven new radiocarbon ages on the bones of these animals revise the age of these kill and butchering localities to 13,300 calibrated y B.P. The tight chronological clustering of the eight kill localities at Wally's Beach indicates these animals were killed over a short period. Human hunting of horse and camel in Canada, coupled with mammoth, mastodon, sloth, and gomphothere hunting documented at other sites from 14,800-12,700 calibrated y B.P., show that 6 of the 36 genera of megafauna that went extinct by approximately 12,700 calibrated y B.P. were hunted by humans. This study shows the importance of accurate geochronology, without which significant discoveries will go unrecognized and the empirical data used to build models explaining the peopling of the Americas and Pleistocene extinctions will be in error.


Subject(s)
Fossils , Human Activities , Paleontology/methods , Radiometric Dating/methods , Animals , Camelus , Canada , Environment , Extinction, Biological , History, Ancient , Horses , Humans , Mammoths , North America , Sloths , Weapons/history
16.
Proc Natl Acad Sci U S A ; 112(12): 3669-73, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25755263

ABSTRACT

Between 1500 and 1850, more than 12 million enslaved Africans were transported to the New World. The vast majority were shipped from West and West-Central Africa, but their precise origins are largely unknown. We used genome-wide ancient DNA analyses to investigate the genetic origins of three enslaved Africans whose remains were recovered on the Caribbean island of Saint Martin. We trace their origins to distinct subcontinental source populations within Africa, including Bantu-speaking groups from northern Cameroon and non-Bantu speakers living in present-day Nigeria and Ghana. To our knowledge, these findings provide the first direct evidence for the ethnic origins of enslaved Africans, at a time for which historical records are scarce, and demonstrate that genomic data provide another type of record that can shed new light on long-standing historical questions.


Subject(s)
Enslaved Persons , Genetics, Population , Genome-Wide Association Study , Africa/ethnology , Algorithms , Archaeology , Bayes Theorem , Black People/genetics , Caribbean Region/ethnology , Chromosomes, Human, Y/genetics , Cluster Analysis , DNA, Mitochondrial/genetics , Enslavement , Ethnicity/genetics , Genetic Markers , Genome, Human , Haplotypes , Humans , Likelihood Functions , Principal Component Analysis , Probability , Sequence Analysis, DNA
17.
Science ; 345(6200): 1255832, 2014 08 29.
Article in English | MEDLINE | ID: mdl-25170159

ABSTRACT

The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.


Subject(s)
Genome, Human/genetics , Human Migration , Inuit/genetics , Alaska/ethnology , Arctic Regions/ethnology , Base Sequence , Bone and Bones , Canada/ethnology , DNA, Mitochondrial/genetics , Greenland/ethnology , Hair , History, Ancient , Humans , Inuit/ethnology , Inuit/history , Molecular Sequence Data , Siberia/ethnology , Survivors/history , Tooth
18.
Science ; 344(6185): 750-4, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24833392

ABSTRACT

Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry.


Subject(s)
Biological Evolution , Indians, North American/genetics , Skeleton , Base Sequence , DNA, Mitochondrial/genetics , Haplotypes , Humans , Mexico , Molecular Sequence Data , Paleontology , Radiometric Dating , Skull/anatomy & histology
19.
Nature ; 506(7487): 225-9, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24522598

ABSTRACT

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Subject(s)
Genome, Human/genetics , Indians, North American/genetics , Phylogeny , Archaeology , Asia/ethnology , Bone and Bones , Burial , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Emigration and Immigration/history , Europe/ethnology , Gene Flow/genetics , Haplotypes/genetics , History, Ancient , Humans , Infant , Male , Models, Genetic , Molecular Sequence Data , Montana , Population Dynamics , Radiometric Dating
20.
Nature ; 505(7481): 87-91, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24256729

ABSTRACT

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


Subject(s)
Asian People/genetics , Genome, Human/genetics , Indians, North American/ethnology , Indians, North American/genetics , Phylogeny , White People/genetics , Animals , Asia/ethnology , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Emigration and Immigration , Gene Flow/genetics , Genome, Mitochondrial/genetics , Haplotypes/genetics , Humans , Indians, North American/classification , Male , Phylogeography , Siberia/ethnology , Skeleton
SELECTION OF CITATIONS
SEARCH DETAIL
...