Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958519

ABSTRACT

Altered hepatic mitochondrial fatty acid ß-oxidation and associated tricarboxylic acid (TCA) cycle activity contributes to lifestyle-related diseases, and circulating biomarkers reflecting these changes could have disease prognostic value. This study aimed to determine hepatic and systemic changes in TCA-cycle-related metabolites upon the selective pharmacologic enhancement of mitochondrial fatty acid ß-oxidation in the liver, and to elucidate the mechanisms and potential markers of hepatic mitochondrial activity. Male Wistar rats were treated with 3-thia fatty acids (e.g., tetradecylthioacetic acid (TTA)), which target mitochondrial biogenesis, mitochondrial fatty acid ß-oxidation, and ketogenesis predominantly in the liver. Hepatic and plasma concentrations of TCA cycle intermediates and anaplerotic substrates (LC-MS/MS), plasma ketones (colorimetric assay), and acylcarnitines (HPLC-MS/MS), along with associated TCA-cycle-related gene expression (qPCR) and enzyme activities, were determined. TTA-induced hepatic fatty acid ß-oxidation resulted in an increased ratio of plasma ketone bodies/nonesterified fatty acid (NEFA), lower plasma malonyl-CoA levels, and a higher ratio of plasma acetylcarnitine/palmitoylcarnitine (C2/C16). These changes were associated with decreased hepatic and increased plasma pyruvate concentrations, and increased plasma concentrations of succinate, malate, and 2-hydroxyglutarate. Expression of several genes encoding TCA cycle enzymes and the malate-oxoglutarate carrier (Slc25a11), glutamate dehydrogenase (Gdh), and malic enzyme (Mdh1 and Mdh2) were significantly increased. In conclusion, the induction of hepatic mitochondrial fatty acid ß-oxidation by 3-thia fatty acids lowered hepatic pyruvate while increasing plasma pyruvate, as well as succinate, malate, and 2-hydroxyglutarate.


Subject(s)
Malates , Pyruvic Acid , Rats , Animals , Male , Rats, Wistar , Malates/metabolism , Pyruvic Acid/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Liver/metabolism , Fatty Acids/metabolism , Oxidation-Reduction , Ketone Bodies/metabolism , Succinates/metabolism
2.
Article in English | MEDLINE | ID: mdl-33454435

ABSTRACT

OBJECTIVE: Discovery of specific markers that reflect altered hepatic fatty acid oxidation could help to detect an individual's risk of fatty liver, type 2 diabetes and cardiovascular disease at an early stage. Lipid and protein metabolism are intimately linked, but our understanding of this crosstalk remains limited. METHODS: In male Wistar rats, we used synthetic fatty acid analogues (3-thia fatty acids) as a tool to induce hepatic fatty acid oxidation and mitochondrial biogenesis, to gain new insight into the link between fatty acid oxidation, amino acid metabolism and TCA cycle-related intermediate metabolites in liver and plasma. RESULTS: Rats treated with 3-thia fatty acids had 3-fold higher hepatic, but not adipose and skeletal muscle, expression of the thioesterase 3-hydroxyisobutyryl-CoA hydrolase (Hibch), which controls the formation of 3-hydroxyisobutyrate (3-HIB) in the valine degradation pathway. Consequently, 3-thia fatty acid-stimulated hepatic fatty acid oxidation and ketogenesis was accompanied by decreased plasma 3-HIB and increased methylmalonic acid (MMA) concentrations further downstream in BCAA catabolism. The higher plasma MMA corresponded to higher MMA-CoA hydrolase activity and hepatic expression of GTP-specific succinyl-CoA synthase (Suclg2) and succinate dehydrogenase (Sdhb), and lower MMA-CoA mutase activity. Plasma 3-HIB correlated positively to plasma and hepatic concentrations of TAG, plasma total fatty acids, plasma NEFA and insulin/glucose ratio, while the reverse correlations were seen for MMA. CONCLUSION: Our study provides new insight into TCA cycle-related metabolic changes associated with altered hepatic fatty acid flux, and identifies 3-HIB and MMA as novel circulating markers reflective of mitochondrial ß-oxidation in male Wistar rats.


Subject(s)
Fatty Acids/metabolism , Hydroxybutyrates/blood , Methylmalonic Acid/blood , Mitochondria, Liver/metabolism , Animals , Hydroxybutyrates/metabolism , Insulin Resistance , Male , Methylmalonic Acid/metabolism , Oxidation-Reduction , Rats, Wistar
3.
Neuromuscul Disord ; 31(1): 56-68, 2021 01.
Article in English | MEDLINE | ID: mdl-33334662

ABSTRACT

Mutations in the N-myc downstream-regulated gene 1 (NDRG1) cause degenerative polyneuropathy in ways that are poorly understood. We have investigated Alaskan Malamute dogs with neuropathy caused by a missense mutation in NDRG1. In affected animals, nerve levels of NDRG1 protein were reduced by more than 70% (p< 0.03). Nerve fibers were thinly myelinated, loss of large myelinated fibers was pronounced and teased fiber preparations showed both demyelination and remyelination. Inclusions of filamentous material containing actin were present in adaxonal Schwann cell cytoplasm and Schmidt-Lanterman clefts. This condition strongly resembles the human Charcot-Marie-Tooth type 4D. However, the focally folded myelin with adaxonal infoldings segregating the axon found in this study are ultrastructural changes not described in the human disease. Furthermore, lipidomic analysis revealed a profound loss of peripheral nerve lipids. Our data suggest that the low levels of mutant NDRG1 is insufficient to support Schwann cells in maintaining myelin homeostasis.


Subject(s)
Cell Cycle Proteins , Charcot-Marie-Tooth Disease/veterinary , Dog Diseases/genetics , Intracellular Signaling Peptides and Proteins , Schwann Cells/metabolism , Animals , Charcot-Marie-Tooth Disease/genetics , Dogs , Female , Male , Mutation/genetics , Mutation, Missense , Myelin Sheath , Polyneuropathies/genetics
4.
FASEB J ; 34(2): 2359-2375, 2020 02.
Article in English | MEDLINE | ID: mdl-31907995

ABSTRACT

Studies in mice with ablation of Prnp, the gene that encodes the cellular prion protein (PrPC ), have led to the hypothesis that PrPC is important for peripheral nerve myelin maintenance. Here, we have used a nontransgenic animal model to put this idea to the test; namely, goats that, due to a naturally occurring nonsense mutation, lack PrPC . Teased nerve fiber preparation revealed a demyelinating pathology in goats without PrPC . Affected nerves were invaded by macrophages and T cells and displayed vacuolated fibers, shrunken axons, and onion bulbs. Peripheral nerve lipid composition was similar in young goats with or without PrPC , but markedly different between corresponding groups of adult goats, reflecting the progressive nature of the neuropathy. This is the first report of a subclinical demyelinating polyneuropathy caused by loss of PrPC function in a nontransgenic mammal.


Subject(s)
Demyelinating Diseases/immunology , Goats/immunology , Myelin Sheath/immunology , Polyneuropathies/immunology , PrPC Proteins/deficiency , Animals , Demyelinating Diseases/pathology , Macrophages/immunology , Macrophages/pathology , Mice , Myelin Sheath/pathology , Polyneuropathies/pathology , PrPC Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
5.
Article in English | MEDLINE | ID: mdl-29571119

ABSTRACT

The phosphometabolome is comprised of all phosphorylated metabolites including the major metabolite classes sugar phosphates and nucleoside phosphates. Phosphometabolites are invaluable in any cell as a part of primary- and energy- metabolism, and as building blocks in the biosynthesis of macromolecules. Here, we report quantitative profiling of the phosphometabolome by applying capillary ion chromatography-tandem mass spectrometry (capIC-MS/MS), ensuring improved chromatographic separation, robustness and quantitative precision. Baseline separation was achieved for six out of eight tested hexose phosphates. Quantitative precision and reproducibility was improved by introducing a fully uniformly (U) 13C-labeled biological extract and applying an isotope dilution (ID) correction strategy. A 13C-labeled biological extract does in principle contain internal standards (IS) for all metabolites, but low abundant metabolites pose a challenge, and solutions to this are discussed. The extreme reproducibility and reliability of this capIC-MS/MS method was demonstrated by running the instrumentation continuously for ten days.


Subject(s)
Chromatography, Liquid/methods , Metabolome/physiology , Metabolomics/methods , Sugar Phosphates/analysis , Sugar Phosphates/metabolism , Tandem Mass Spectrometry/methods , Isotope Labeling , Metabolic Networks and Pathways/physiology , Phosphorylation , Sugar Phosphates/chemistry
6.
Antonie Van Leeuwenhoek ; 103(3): 603-15, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23132278

ABSTRACT

A challenge in the rational exploitation of microbial culture collections is to avoid superfluous testing of replicas. MALDI-TOF MS has been shown to be an efficient dereplication tool as it can be used to discriminate between bacterial isolates at the species level. A bacterial culture collection of more than 10,000 heterotrophic marine bacterial isolates from sea-water surface layers of the Norwegian Trondheimsfjord and neighbouring coastal areas has been established. A sub-collection of pigmented isolates was earlier screened for novel carotenoids with UVA-Blue light absorbing properties. This was a comprehensive analytical task and it was observed that a significant number of extracts with identical pigment profile were recovered. Hence, this study was undertaken to explore the use of MALDI-TOF MS as a dereplication tool to quickly characterize the bacterial collection. Furthermore, LC-DAD-MS analysis of pigment profiles was performed to check if pigment profile diversity was maintained among isolates kept after the potential MALDI-TOF MS selection step. Four hundred isolates comprising both pigmented and non-pigmented isolates were used for this study. The resulting MALDI-TOF MS dendrogram clearly identified a diversity of different taxa and these were supported by the pigment profile clustering, thus linking the pigment production as species-specific properties. Although one exception was found, it can be concluded that MALDI-TOF MS dereplication is a promising pre-screening tool for more efficient screening of microbial culture collection containing pigments with potential novel properties.


Subject(s)
Bacteria/chemistry , Bacteria/classification , Seawater/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteria/metabolism , Cluster Analysis , Norway , Phylogeny , Pigments, Biological/analysis
7.
Appl Environ Microbiol ; 77(8): 2648-55, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21335387

ABSTRACT

The inducible Pm promoter integrated into broad-host-range plasmid RK2 replicons can be fine-tuned continuously between the uninduced and maximally induced levels by varying the inducer concentrations. To lower the uninduced background level while still maintaining the inducibility for applications in, for example, metabolic engineering and synthetic (systems) biology, we report here the use of mutations in the Pm DNA region corresponding to the 5' untranslated region of mRNA (UTR). Five UTR variants obtained by doped oligonucleotide mutagenesis and selection, apparently reducing the efficiency of translation, were all found to display strongly reduced uninduced expression of three different reporter genes (encoding ß-lactamase, luciferase, and phosphoglucomutase) in Escherichia coli. The ratio between induced and uninduced expression remained the same or higher compared to cells containing a corresponding plasmid with the wild-type UTR. Interestingly, the UTR variants also displayed similar effects on expression when substituted for the native UTR in another and constitutive promoter, P1 (P(antitet)), indicating a broad application potential of these UTR variants. Two of the selected variants were used to control the production of the C(50) carotenoid sarcinaxanthin in an engineered strain of E. coli that produces the precursor lycopene. Sarcinaxanthin is produced in this particular strain by expressing three Micrococcus luteus derived genes from the promoter Pm. The results indicated that UTR variants can be used to eliminate sarcinaxanthin production under uninduced conditions, whereas cells containing the corresponding plasmid with a wild-type UTR produced ca. 25% of the level observed under induced conditions.


Subject(s)
5' Untranslated Regions , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , RNA, Messenger/genetics , Down-Regulation , Genes, Reporter , Luciferases/genetics , Micrococcus luteus/genetics , Mutagenesis, Site-Directed , Mutation , Phosphoglucomutase/genetics , Plasmids , Protein Biosynthesis , RNA, Messenger/metabolism , Replicon , Xanthophylls/biosynthesis , beta-Lactamases/genetics
8.
J Bacteriol ; 192(21): 5688-99, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20802040

ABSTRACT

We report the cloning and characterization of the biosynthetic gene cluster (crtE, crtB, crtI, crtE2, crtYg, crtYh, and crtX) of the γ-cyclic C(50) carotenoid sarcinaxanthin in Micrococcus luteus NCTC2665. Expression of the complete and partial gene cluster in Escherichia coli hosts revealed that sarcinaxanthin biosynthesis from the precursor molecule farnesyl pyrophosphate (FPP) proceeds via C(40) lycopene, C(45) nonaflavuxanthin, C(50) flavuxanthin, and C(50) sarcinaxanthin. Glucosylation of sarcinaxanthin was accomplished by the crtX gene product. This is the first report describing the biosynthetic pathway of a γ-cyclic C(50) carotenoid. Expression of the corresponding genes from the marine M. luteus isolate Otnes7 in a lycopene-producing E. coli host resulted in the production of up to 2.5 mg/g cell dry weight sarcinaxanthin in shake flasks. In an attempt to experimentally understand the specific difference between the biosynthetic pathways of sarcinaxanthin and the structurally related ε-cyclic decaprenoxanthin, we constructed a hybrid gene cluster with the γ-cyclic C(50) carotenoid cyclase genes crtYg and crtYh from M. luteus replaced with the analogous ε-cyclic C(50) carotenoid cyclase genes crtYe and crtYf from the natural decaprenoxanthin producer Corynebacterium glutamicum. Surprisingly, expression of this hybrid gene cluster in an E. coli host resulted in accumulation of not only decaprenoxanthin, but also sarcinaxanthin and the asymmetric ε- and γ-cyclic C(50) carotenoid sarprenoxanthin, described for the first time in this work. Together, these data contributed to new insight into the diverse and multiple functions of bacterial C(50) carotenoid cyclases as key catalysts for the synthesis of structurally different carotenoids.


Subject(s)
Bacterial Proteins/metabolism , Carotenoids/metabolism , Gene Expression Regulation, Bacterial/physiology , Micrococcus luteus/enzymology , Micrococcus luteus/metabolism , Xanthophylls/biosynthesis , Carotenoids/genetics , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Glycosyltransferases/metabolism , Micrococcus luteus/genetics , Molecular Structure , Multigene Family , Xanthophylls/genetics
9.
J Microbiol ; 48(1): 16-23, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20221724

ABSTRACT

Microbial culture collections are important resources for isolation of natural compounds with novel properties. In this study, a culture collection of around 1,500 pigmented heterotrophic bacteria was established. The bacteria were isolated from the sea surface microlayer at different sampling sites along the mid-part of the Norwegian coast. The bacterial isolates produced pigments of various coloration (e.g. golden, yellow, red, pink and orange). Methanol extracts of sixteen isolates were characterized with LC-Diodearray-TOF mass spectrometry analysis. The number of pigments per isolate varied considerably, and a tentative identification of the pigments was performed based on UV-absorbance profile and molecular formula assignation based on the accurate mass determination. The LC-MS analyses revealed that most of the pigments probably were carotenoids. Furthermore, we developed a high throughput LC-MS method for characterization and screening of a larger sub-fraction (300 isolates) of the culture collection. The aim was to screen and identify bacterial isolates producing carotenoids that absorb light in the UVA-Blue light. Six of the bacterial strains were selected for detailed investigation, including 16s rRNA sequencing, preparative HPLC for purification of major carotenoids and subsequent structural elucidation with NMR. Among the identified carotenoids were zeaxanthin, nostoxanthin and sarcinaxanthin, some with novel glycosylation patterns.


Subject(s)
Bacteria/isolation & purification , Carotenoids/analysis , Water Microbiology , Bacteria/chemistry , Bacteria/genetics , Carotenoids/chemistry , Carotenoids/isolation & purification , Chromatography, Liquid , Mass Spectrometry , Methanol/chemistry , Norway , Oceans and Seas , Spectrophotometry, Ultraviolet
10.
J Cell Sci ; 119(Pt 21): 4486-98, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17046995

ABSTRACT

Transferrin receptor 2 (TfR2) possesses a YQRV motif similar to the YTRF motif of transferrin receptor 1 (TfR1) responsible for the internalization and secretion through the endosomal pathway. Raft biochemical dissection showed that TfR2 is a component of the low-density Triton-insoluble (LDTI) plasma membrane domain, able to co-immunoprecipitate with caveolin-1 and CD81, two structural raft proteins. In addition, subcellular fractionation experiments showed that TfR1, which spontaneously undergoes endocytosis and recycling, largely distributed to intracellular organelles, whereas TfR2 was mainly associated with the plasma membrane. Given the TfR2 localization in lipid rafts, we tested its capability to activate cell signalling. Interaction with an anti-TfR2 antibody or with human or bovine holotransferrin showed that it activated ERK1/ERK2 and p38 MAP kinases. Integrity of lipid rafts was required for MAPK activation. Co-localization of TfR2 with CD81, a raft tetraspanin exported through exosomes, prompted us to investigate exosomes released by HepG2 and K562 cells into culture medium. TfR2, CD81 and to a lesser extent caveolin-1, were found to be part of the exosomal budding vesicles. In conclusion, the present study indicates that TfR2 localizes in LDTI microdomains, where it promotes cell signalling, and is exported out of the cells through the exosome pathway, where it acts as an intercellular messenger.


Subject(s)
Membrane Microdomains/metabolism , Mitogen-Activated Protein Kinases/metabolism , Receptors, Transferrin/metabolism , Signal Transduction , Transport Vesicles/metabolism , Antigens, CD/metabolism , Blotting, Western , Carcinoma, Hepatocellular/metabolism , Caveolin 1/metabolism , Cell Membrane/metabolism , Cells, Cultured/metabolism , Endocytosis , Flow Cytometry , Humans , Immunoprecipitation , K562 Cells/metabolism , Liver Neoplasms/metabolism , Phosphorylation , Receptors, Transferrin/genetics , Subcellular Fractions , Tetraspanin 28
11.
Appl Microbiol Biotechnol ; 68(6): 808-17, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15818474

ABSTRACT

In natural and man-made ecosystems nitrifying bacteria experience frequent exposure to oxygen-limited conditions and thus have to compete for oxygen. In several reactor systems (retentostat, chemostat and sequencing batch reactors) it was possible to establish co-cultures of aerobic ammonium- and nitrite-oxidizing bacteria at very low oxygen concentrations (2-8 microM) provided that ammonium was the limiting N compound. When ammonia was in excess of oxygen, the nitrite-oxidizing bacteria were washed out of the reactors, and ammonium was converted to mainly nitrite, nitric oxide and nitrous oxide by Nitrosomonas-related bacteria. The situation could be rapidly reversed by adjusting the oxygen to ammonium ratio in the reactor. In batch and continuous tests, no inhibitory effect of ammonium, nitric oxide or nitrous oxide on nitrite-oxidizing bacteria could be detected in our studies. The recently developed oxygen microsensors may be helpful to determine the kinetic parameters of the nitrifying bacteria, which are needed to make predictive kinetic models of their competition.


Subject(s)
Bacteria, Aerobic/growth & development , Nitrites/metabolism , Oxygen/pharmacology , Quaternary Ammonium Compounds/metabolism , Ammonia/pharmacology , Ammonia/toxicity , Bacteria, Aerobic/metabolism , Biomass , Bioreactors , Culture Media , Kinetics , Nitrous Oxide/pharmacology , Nitrous Oxide/toxicity , Oxidation-Reduction
12.
Biochem J ; 377(Pt 2): 367-78, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14505489

ABSTRACT

IRFs [IFN (interferon) regulatory factors] constitute a family of transcription factors involved in IFN signalling and in the development and differentiation of the immune system. IRF-2 has generally been described as an antagonist of IRF-1-mediated transcription of IFN and IFN-inducible genes; however, it has been recently identified as a transcriptional activator of some genes, such as those encoding histone H4, VCAM-1 (vascular cell adhesion molecule-1) and Fas ligand. Biologically, IRF-2 plays an important role in cell growth regulation and has been shown to be a potential oncogene. Studies in knock-out mice have also implicated IRF-2 in the differentiation and functionality of haematopoietic cells. Here we show that IRF-2 expression in a myeloid progenitor cell line leads to reprogramming of these cells towards the megakaryocytic lineage and enables them to respond to thrombopoietin, as assessed by cell morphology and expression of specific differentiation markers. Up-regulation of transcription factors involved in the development of the megakaryocytic lineage, such as GATA-1, GATA-2, FOG-1 (friend of GATA-1) and NF-E2 (nuclear factor-erythroid-2), and transcriptional stimulation of the thrombopoietin receptor were also demonstrated. Our results provide evidence for a key role for IRF-2 in the induction of a programme of megakaryocytic differentiation, and reveal a remarkable functional diversity of this transcription factor in the regulation of cellular responses.


Subject(s)
DNA-Binding Proteins/physiology , Megakaryocytes/metabolism , Repressor Proteins , Apoptosis , Cell Differentiation , Cell Division , Cell Line , Cell Lineage , Humans , Interferon Regulatory Factor-2 , Megakaryocytes/cytology , Myeloid Progenitor Cells/physiology , Transcription Factors/metabolism , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...