Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biochem ; 385(1-2): 225-38, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24101444

ABSTRACT

Heparan sulfate proteoglycans act as co-receptors for many chemokines and growth factors. The sulfation pattern of the heparan sulfate chains is a critical regulatory step affecting the binding of chemokines and growth factors. N-deacetylase-N-sulfotransferase1 (Ndst1) is one of the first enzymes to catalyze sulfation. Previously published work has shown that HSPGs alter tangent moduli and stiffness of tissues and cells. We hypothesized that loss of Ndst1 in smooth muscle would lead to significant changes in heparan sulfate modification and the elastic properties of arteries. In line with this hypothesis, the axial tangent modulus was significantly decreased in aorta from mice lacking Ndst1 in smooth muscle (SM22αcre(+)Ndst1(-/-), p < 0.05, n = 5). The decrease in axial tangent modulus was associated with a significant switch in myosin and actin types and isoforms expressed in aorta and isolated aortic vascular smooth muscle cells. In contrast, no changes were found in the compliance of smaller thoracodorsal arteries of SM22αcre(+)Ndst1(-/-) mice. In summary, the major findings of this study were that targeted ablation of Ndst1 in smooth muscle cells results in altered biomechanical properties of aorta and differential expression of myosin and actin types and isoforms.


Subject(s)
Gene Deletion , Muscle, Smooth, Vascular/physiopathology , Sulfotransferases/deficiency , Animals , Arteries/physiopathology , Biomechanical Phenomena , Compliance , Down-Regulation/genetics , In Vitro Techniques , Mice , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Organ Specificity , Reproducibility of Results , Staining and Labeling , Stress, Mechanical , Sulfotransferases/metabolism , Up-Regulation/genetics , Vasoconstriction
2.
BMC Med Genomics ; 2: 57, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19712457

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are a class of approximately 22 nucleotide long, widely expressed RNA molecules that play important regulatory roles in eukaryotes. To investigate miRNA function, it is essential that methods to quantify their expression levels be available. METHODS: We evaluated a new miRNA profiling platform that utilizes Illumina's existing robust DASL chemistry as the basis for the assay. Using total RNA from five colon cancer patients and four cell lines, we evaluated the reproducibility of miRNA expression levels across replicates and with varying amounts of input RNA. The beta test version was comprised of 735 miRNA targets of Illumina's miRNA profiling application. RESULTS: Reproducibility between sample replicates within a plate was good (Spearman's correlation 0.91 to 0.98) as was the plate-to-plate reproducibility replicates run on different days (Spearman's correlation 0.84 to 0.98). To determine whether quality data could be obtained from a broad range of input RNA, data obtained from amounts ranging from 25 ng to 800 ng were compared to those obtained at 200 ng. No effect across the range of RNA input was observed. CONCLUSION: These results indicate that very small amounts of starting material are sufficient to allow sensitive miRNA profiling using the Illumina miRNA high-dimensional platform. Nonlinear biases were observed between replicates, indicating the need for abundance-dependent normalization. Overall, the performance characteristics of the Illumina miRNA profiling system were excellent.

3.
Proc Natl Acad Sci U S A ; 100(12): 7383-8, 2003 Jun 10.
Article in English | MEDLINE | ID: mdl-12771380

ABSTRACT

Pinus taeda L. (loblolly pine) and Arabidopsis thaliana differ greatly in form, ecological niche, evolutionary history, and genome size. Arabidopsis is a small, herbaceous, annual dicotyledon, whereas pines are large, long-lived, coniferous forest trees. Such diverse plants might be expected to differ in a large number of functional genes. We have obtained and analyzed 59,797 expressed sequence tags (ESTs) from wood-forming tissues of loblolly pine and compared them to the gene sequences inferred from the complete sequence of the Arabidopsis genome. Approximately 50% of pine ESTs have no apparent homologs in Arabidopsis or any other angiosperm in public databases. When evaluated by using contigs containing long, high-quality sequences, we find a higher level of apparent homology between the inferred genes of these two species. For those contigs 1,100 bp or longer, approximately 90% have an apparent Arabidopsis homolog (E value < 10-10). Pines and Arabidopsis last shared a common ancestor approximately 300 million years ago. Few genes would be expected to retain high sequence similarity for this time if they did not have essential functions. These observations suggest substantial conservation of gene sequence in seed plants.


Subject(s)
Arabidopsis/genetics , Genes, Plant , Pinus/genetics , 3' Untranslated Regions , 5' Untranslated Regions , Conserved Sequence , Contig Mapping , DNA, Complementary/genetics , DNA, Plant/genetics , Evolution, Molecular , Expressed Sequence Tags , Gene Expression , Genome, Plant , Molecular Sequence Data , Pinus taeda , Retroelements/genetics , Sequence Homology, Nucleic Acid , Species Specificity , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...