Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ChemMedChem ; 13(2): 147-154, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29195005

ABSTRACT

Human proteinase-activated receptor 2 (PAR2), a transmembrane G-protein-coupled receptor (GPCR), is an attractive target for a novel anticancer therapy, as it plays a critical role in cell migration and invasion. Selective PAR2 inhibitors therefore have potential as anti-metastatic drugs. Knowing that the natural product teleocidin A2 is able to inhibit PAR2 in tumor cells, the goal of the present study was to elaborate structure-activity relationships and to identify potent PAR2 inhibitors with lower activity against the adverse target, protein kinase C (PKC). For this purpose, an efficient gram-scale total synthesis of indolactam V (i.e., the parent structure of all teleocidins) was developed, and a library of derivatives was prepared. Some compounds were indeed found to exhibit high potency as PAR2 inhibitors at low nanomolar concentrations with improved selectivity (relative to teleocidin A2). The pseudopeptidic fragment bridging the C3 and C4 positions of the indole core proved to be essential for target binding, whereas activity and target selectivity depends on the substituents at N1 or C7. This study revealed novel derivatives that show high efficacy in PAR2 antagonism combined with increased selectivity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Calcium/metabolism , Indoles/chemical synthesis , Lactams/chemical synthesis , Receptor, PAR-2/antagonists & inhibitors , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Humans , Indoles/pharmacology , Lactams/pharmacology , Lyngbya Toxins/chemistry , Molecular Structure , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Structure-Activity Relationship
2.
Angew Chem Int Ed Engl ; 55(8): 2894-8, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26800384

ABSTRACT

In studies within the realm of cancer immunotherapy, the synthesis of exactly specified tumor-associated glycopeptide antigens is shown to be a key strategy for obtaining a highly selective biological reagent, that is, a monoclonal antibody that completely differentiates between tumor and normal epithelial cells and specifically marks the tumor cells in pancreas tumors. Mucin MUC1, which is overexpressed in many prevalent cancers, was identified as a promising target for this strategy. Tumor-associated MUC1 differs significantly from that expressed by normal cells, in particular by altered glycosylation. Structurally defined tumor-associated MUC1 cannot be isolated from tumor cells. We synthesized MUC1-glycopeptide vaccines and analyzed their structure-activity relationships in immunizations; a monoclonal antibody that specifically distinguishes between human normal and tumor epithelial cells was thus generated.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Breast Neoplasms/pathology , Breast/cytology , Cancer Vaccines/administration & dosage , Glycopeptides/immunology , Pancreatic Neoplasms/diagnosis , Female , Humans
3.
Pharmacol Res Perspect ; 4(4): e00230, 2016 08.
Article in English | MEDLINE | ID: mdl-28116092

ABSTRACT

Enhanced expression of the proteinase-activated receptor 2 (PAR2) is linked to cell proliferation and migration in many cancer cell types. The role of PAR2 in cancer progression strongly illustrates the need for PAR2-inhibiting compounds. However, to date, potent and selective PAR2 antagonists have not been reported. The natural product teleocidin A2 was characterized against PAR2-activating peptide SLIGKV-NH 2, and trypsin-induced PAR2-dependent intracellular Ca2+ mobilization in tumor and in primary endothelial or epithelial cells. Further biochemical and cell-based studies were conducted to evaluate teleocidin specificity. The antagonizing effect of teleocidin A2 was confirmed in PAR2-dependent cell migration and rearrangement of actin cytoskeleton of human breast adenocarcinoma cell line (MDA-MB 231) breast cancer cells. Teleocidin A2 antagonizes PAR2-dependent intracellular Ca2+ mobilization induced by either SLIGKV-NH 2 or trypsin with IC 50 values from 15 to 25 nmol/L in MDA-MB 231, lung carcinoma cell line, and human umbilical vein endothelial cell. Half maximal inhibition of either PAR1 or P2Y receptor-dependent Ca2+ release is only achieved with 10- to 20-fold higher concentrations of teleocidin A2. In low nanomolar concentrations, teleocidin A2 reverses both SLIGKV-NH 2 and trypsin-mediated PAR2-dependent migration of MDA-MB 231 cells, and has no effect itself on cell migration and no effect on cell viability. Teleocidin A2 further controls PAR2-induced actin cytoskeleton rearrangement of MDA-MB 231 cells. Thus, for the first time, the small molecule natural product teleocidin A2 exhibiting PAR2 antagonism in the low nanomolar range with potent antimigratory activity is described.

SELECTION OF CITATIONS
SEARCH DETAIL