Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 14095, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839512

ABSTRACT

Natural coastal microbial mat communities are multi-species assemblages that experience fluctuating environmental conditions and are shaped by resource competition as well as by cooperation. Laboratory studies rarely address the natural complexity of microbial communities but are usually limited to homogeneous mono-cultures of key species grown in liquid media. The mat-forming filamentous cyanobacteria Lyngbya aestuarii and Coleofasciculus chthonoplastes were cultured under different conditions to investigate the expression of circadian clock genes and genes that are under their control. The cyanobacteria were grown in liquid medium or on a solid substrate (glass beads) as mono- or as co-cultures under a light-dark regime and subsequently transferred to continuous light. TaqMan-probe based qPCR assays were used to quantify the expression of the circadian clock genes kaiA, kaiB, and kaiC, and of four genes that are under control of the circadian clock: psbA, nifH, ftsZ, and prx. Expression of kaiABC was influenced by co-culturing the cyanobacteria and whether grown in liquid media or on a solid substrate. Free-running (i.e. under continuous light) expression cycle of the circadian clock genes was observed in L. aestuarii but not in C. chthonoplastes. In the former organism, maximum expression of psbA and nifH occurred temporally separated and independent of the light regime, although the peak shifted in time when the culture was transferred to continuous illumination. Although functionally similar, both species of cyanobacteria displayed different 24-h transcriptional patterns in response to the experimental treatments, suggesting that their circadian clocks have adapted to different life strategies adopted by these mat-forming cyanobacteria.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/physiology , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Circadian Clocks/physiology , Circadian Rhythm/genetics , Circadian Rhythm Signaling Peptides and Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Coculture Techniques , Cyanobacteria/genetics , Cyanobacteria/physiology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Gene Expression/genetics , Lyngbya/genetics , Lyngbya/metabolism , Lyngbya/physiology , Microbiota/physiology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Transcription, Genetic/genetics
3.
Sci Rep ; 9(1): 9035, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227767

ABSTRACT

Growth and activity of coastal microbial mats is strongly seasonal. The development of these mats starts in early spring and fully maturate during late summer, where after growth ceases and subsequently the mat deteriorates by erosion and decomposition in winter. Here, the composition of the microbial community of three different mats developing along the tidal gradient of the North Sea beach of the Dutch barrier island Schiermonnikoog was analysed. The 16S ribosomal RNA molecules and the associated gene were sequenced in order to obtain the active (RNA) and resident (DNA) community members, respectively. Proteobacteria, Cyanobacteria, and Bacteroidetes dominated the mats during the whole year but considerable differences among these groups were found along the tidal gradient and seasonally when observed at a finer taxonomic resolution. Richness and diversity increased during the year starting from a pioneering community that is gradually succeeded by a more diverse climax community. The initial pioneers consisted of the cold-adapted photoautotrophic cyanobacterium Nodularia sp. and potential cold adapted members of the alphaproteobacterial Loktanella genus. These pioneers were succeeded by, amongst others, cyanobacteria belonging to the genera Leptolyngbya, Lyngbya, and Phormidium. At the upper littoral (Dune site), which was characterized by an extensive salt marsh vegetation, the mats contained a distinct bacterial community that potentially contribute to or benefit from plant decay. This study reports in detail on the seasonal changes and succession of these coastal microbial mat communities and discusses the potential forces that drive these changes.


Subject(s)
Marine Biology , Microbiota , Seasons , Bacteria/classification , Bacteria/genetics , Geologic Sediments/microbiology , Netherlands , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
Environ Microbiol ; 21(5): 1529-1551, 2019 05.
Article in English | MEDLINE | ID: mdl-30507057

ABSTRACT

Phototrophic biofilms are multispecies, self-sustaining and largely closed microbial ecosystems. They form macroscopic structures such as microbial mats and stromatolites. These sunlight-driven consortia consist of a number of functional groups of microorganisms that recycle the elements internally. Particularly, the sulfur cycle is discussed in more detail as this is fundamental to marine benthic microbial communities and because recently exciting new insights have been obtained. The cycling of elements demands a tight tuning of the various metabolic processes and require cooperation between the different groups of microorganisms. This is likely achieved through cell-to-cell communication and a biological clock. Biofilms may be considered as a macroscopic biological entity with its own physiology. We review the various components of some marine phototrophic biofilms and discuss their roles in the system. The importance of extracellular polymeric substances (EPS) as the matrix for biofilm metabolism and as substrate for biofilm microorganisms is discussed. We particularly assess the importance of extracellular DNA, horizontal gene transfer and viruses for the generation of genetic diversity and innovation, and for rendering resilience to external forcing to these biological entities.


Subject(s)
Bacteria/metabolism , Bacteria/radiation effects , Microbiota , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Light , Phototrophic Processes
5.
J Environ Manage ; 227: 313-320, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30199727

ABSTRACT

Hexavalent chromium compounds such as chromate and dichromate, commonly designated as Cr (VI) compounds, are widely used heavy metals in different industries and are considered highly toxic to most life forms. Unfortunately, they have become a major pollutant of groundwater and rivers around dichromate using industries. Bioremediation is widely used to decrease the amount of dichromate in wastewater but requires large amounts of precious fresh water. Here we tested two marine micro-algal species, Phaeodactylum tricornutum strain CCY0033 and Navicula pelliculosa strain CCMP543, for their ability of dichromate bioremediation and concomitantly producing lipids that can serve as biofuel. Dichromate tolerance of the strains was investigated under different growth conditions in order to obtain high biomass yields, high lipid accumulation and high dichromate removal from the medium. Both algal strains grew well and produced high biomass in media containing up to 1 mg of dichromate per liter. Variations in growth conditions revealed that dichromate removal from the medium correlated positively with biomass yield. Dichromate removal using living cells was in the same order of magnitude as with autoclaved dead cells or when using extracted extracellular polymeric substances (EPS). This suggests biosorption of dichromate to cell-associated polymeric substances as the major mechanism of the bioremediation process. For both strains, optimal dichromate removal and lipid production were achieved at a light intensity of 55 µmol m-2s-1 and at a sodium nitrate concentration of 3 mM. The optimal temperature for dichromate removal and lipid production was 23 °C for P. tricornutum and 27 °C for N. pelliculosa. Compared to P. tricornutum strain CCY0033, N. pelliculosa strain CCMP543 produced an overall higher lipid yield under these conditions.


Subject(s)
Biodegradation, Environmental , Biofuels , Chromium , Diatoms , Lipids , Water
6.
Article in English | MEDLINE | ID: mdl-29796291

ABSTRACT

Cyanobacteria are major primary producers in coastal microbial mats and provide biochemical energy, organic carbon, and bound nitrogen to the mat community through oxygenic photosynthesis and dinitrogen fixation. In order to anticipate the specific requirements to optimize their metabolism and growth during a day-and-night cycle, Cyanobacteria possess a unique molecular timing mechanism known as the circadian clock that is well-studied under laboratory conditions but little is known about its function in a natural complex community. Here, we investigated daily rhythmicity of gene expression in a coastal microbial mat community sampled at 6 time points during a 24-h period. In order to identify diel expressed genes, meta-transcriptome data was fitted to periodic functions. Out of 24,035 conserved gene transcript clusters, approximately 7% revealed a significant rhythmic expression pattern. These rhythmic genes were assigned to phototrophic micro-eukaryotes, Cyanobacteria but also to Proteobacteria and Bacteroidetes. Analysis of MG-RAST annotated genes and mRNA recruitment analysis of two cyanobacterial and three proteobacterial microbial mat members confirmed that homologs of the cyanobacterial circadian clock genes were also found in other bacterial members of the microbial mat community. These results suggest that various microbial mat members other than Cyanobacteria have their own molecular clock, which can be entrained by a cocktail of Zeitgebers such as light, temperature or metabolites from neighboring species. Hence, microbial mats can be compared to a complex organism consisting of multiple sub-systems that have to be entrained in a cooperative way such that the corpus functions optimally.

7.
Sci Rep ; 7(1): 11522, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912589

ABSTRACT

Lake Meyghan is one of the largest and commercially most important salt lakes in Iran. Despite its inland location and high altitude, Lake Meyghan has a thalassohaline salt composition suggesting a marine origin. Inputs of fresh water by rivers and rainfall formed various basins characterized by different salinities. We analyzed the microbial community composition of three basins by isolation and culturing of microorganisms and by analysis of the metagenome. The basins that were investigated comprised a green ~50 g kg-1 salinity brine, a red ~180 g kg-1 salinity brine and a white ~300 g kg-1 salinity brine. Using different growth media, 57 strains of Bacteria and 48 strains of Archaea were isolated. Two bacterial isolates represent potential novel species with less than 96% 16S rRNA gene sequence identity to known species. Abundant isolates were also well represented in the metagenome. Bacteria dominated the low salinity brine, with Alteromonadales (Gammaproteobacteria) as a particularly important taxon, whereas the high salinity brines were dominated by haloarchaea. Although the brines of Lake Meyghan differ in geochemical composition, their ecosystem function appears largely conserved amongst each other while being driven by different microbial communities.


Subject(s)
Archaea/classification , Bacteria/classification , Biota , Lakes/microbiology , Saline Waters , Archaea/genetics , Archaea/growth & development , Bacteria/genetics , Bacteria/growth & development , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Iran , Lakes/chemistry , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Sci Rep ; 7(1): 5402, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28710405

ABSTRACT

Heterocysts are differentiated cells formed by some filamentous, diazotrophic (dinitrogen-fixing) cyanobacteria. The heterocyst is the site of dinitrogen fixation providing the oxygen-sensitive nitrogenase with a low-oxygen environment. The diffusion of air into the heterocyst is a compromise between the maximum influx of dinitrogen gas while oxygen is kept sufficiently low to allow nitrogenase activity. This investigation tested the hypothesis that the heterocyst is capable of controlling the influx of air. Here, the thermophilic heterocystous cyanobacterium Fischerella sp. was analysed for the effects of oxygen concentration and temperature on nitrogenase activity. Dark nitrogenase activity is directly related to aerobic respiration and was therefore used as a measure of the influx of oxygen into the heterocyst. Above 30% O2, the influx of oxygen was proportional to its external concentration. Below this concentration, the influx of oxygen was higher than expected from the external concentration. A higher or lower temperature also triggered the heterocyst to increase or decrease, respectively, dark nitrogenase activity while the external concentration of oxygen was kept constant. A higher dark nitrogenase activity requires a higher rate of respiration and therefore a higher flux of oxygen. Hence, the heterocyst of Fischerella sp. is capable of controlling the influx of air.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Nitrogenase/metabolism , Oxygen/metabolism , Temperature , Algorithms , Models, Biological , Nitrogen/metabolism , Nitrogen Fixation , Oxygen Consumption
9.
Front Microbiol ; 8: 1132, 2017.
Article in English | MEDLINE | ID: mdl-28670308

ABSTRACT

A new estuarine filamentous heterocystous cyanobacterium was isolated from intertidal sediment of the Lagoa dos Patos estuary (Brazil). The isolate may represent a new genus related to Cylindrospermopsis. While the latter is planktonic, contains gas vesicles, and is toxic, the newly isolated strain is benthic and does not contain gas vesicles. It is not known whether the new strain is toxic. It grows equally well in freshwater, brackish and full salinity growth media, in the absence of inorganic or organic combined nitrogen, with a growth rate 0.6 d-1. Nitrogenase, the enzyme complex responsible for fixing dinitrogen, was most active during the initial growth phase and its activity was not different between the different salinities tested (freshwater, brackish, and full salinity seawater). Salinity shock also did not affect nitrogenase activity. The frequency of heterocysts was high, coinciding with high nitrogenase activity during the initial growth phase, but decreased subsequently. However, the frequency of heterocysts decreased considerably more at higher salinity, while no change in nitrogenase activity occurred, indicating a higher efficiency of dinitrogen fixation. Akinete frequency was low in the initial growth phase and higher in the late growth phase. Akinete frequency was much lower at high salinity, which might indicate better growth conditions or that akinete differentiation was under the same control as heterocyst differentiation. These trends have hitherto not been reported for heterocystous cyanobacteria but they seem to be well fitted for an estuarine life style.

10.
Environ Microbiol ; 19(6): 2105-2109, 2017 06.
Article in English | MEDLINE | ID: mdl-28370986

ABSTRACT

Huber and collaborators reported in this issue of Environmental Microbiology about freshwater picocyanobacteria that showed phenotypic plasticity in the sense that they appeared as single cells as well as in aggregates. The authors suggested that aggregation might be an inducible defense as a response to the presence of grazers. This has been described for eukaryotic phytoplankton and for the cyanobacterium Microcystis but thus far not for picocyanobacteria. Although inducible defense as an explanation is an attractive possibility, it is also problematic. Aggregation is common among cyanobacteria and it offers many advantages as compared with a free-living lifestyle. Here these advantages are highlighted and the possibility of inducible defense is critically assessed.


Subject(s)
Bacterial Adhesion/physiology , Cyanobacteria/growth & development , Cyanobacteria/physiology , Microbial Consortia/physiology , Fresh Water/microbiology , Microcystis/growth & development , Microcystis/physiology , Phytoplankton/growth & development , Phytoplankton/physiology
11.
Front Microbiol ; 7: 1072, 2016.
Article in English | MEDLINE | ID: mdl-27462308

ABSTRACT

Macroalgae belonging to the genus Padina are known to produce antibacterial compounds that may inhibit growth of human- and animal pathogens. Hitherto, it was unclear whether this antibacterial activity is produced by the macroalga itself or by secondary metabolite producing epiphytic bacteria. Here we report antibacterial activities of epiphytic bacteria isolated from Padina pavonica (Peacocks tail) located on northern coast of Tunisia. Eighteen isolates were obtained in pure culture and tested for antimicrobial activities. Based on the 16S rRNA gene sequences the isolates were closely related to Proteobacteria (12 isolates; 2 Alpha- and 10 Gammaproteobacteria), Firmicutes (4 isolates) and Actinobacteria (2 isolates). The antimicrobial activity was assessed as inhibition of growth of 12 species of pathogenic bacteria (Aeromonas salmonicida, A. hydrophila, Enterobacter xiangfangensis, Enterococcus faecium, Escherichia coli, Micrococcus sp., Salmonella typhimurium, Staphylococcus aureus, Streptococcus sp., Vibrio alginoliticus, V. proteolyticus, V. vulnificus) and one pathogenic yeast (Candida albicans). Among the Firmicutes, isolate P8, which is closely related to Bacillus pumilus, displayed the largest spectrum of growth inhibition of the pathogenic bacteria tested. The results emphasize the potential use of P. pavonica associated antagonistic bacteria as producers of novel antibacterial compounds.

12.
Harmful Algae ; 54: 145-159, 2016 04.
Article in English | MEDLINE | ID: mdl-28073473

ABSTRACT

Climate change is likely to stimulate the development of harmful cyanobacterial blooms in eutrophic waters, with negative consequences for water quality of many lakes, reservoirs and brackish ecosystems across the globe. In addition to effects of temperature and eutrophication, recent research has shed new light on the possible implications of rising atmospheric CO2 concentrations. Depletion of dissolved CO2 by dense cyanobacterial blooms creates a concentration gradient across the air-water interface. A steeper gradient at elevated atmospheric CO2 concentrations will lead to a greater influx of CO2, which can be intercepted by surface-dwelling blooms, thus intensifying cyanobacterial blooms in eutrophic waters. Bloom-forming cyanobacteria display an unexpected diversity in CO2 responses, because different strains combine their uptake systems for CO2 and bicarbonate in different ways. The genetic composition of cyanobacterial blooms may therefore shift. In particular, strains with high-flux carbon uptake systems may benefit from the anticipated rise in inorganic carbon availability. Increasing temperatures also stimulate cyanobacterial growth. Many bloom-forming cyanobacteria and also green algae have temperature optima above 25°C, often exceeding the temperature optima of diatoms and dinoflagellates. Analysis of published data suggests that the temperature dependence of the growth rate of cyanobacteria exceeds that of green algae. Indirect effects of elevated temperature, like an earlier onset and longer duration of thermal stratification, may also shift the competitive balance in favor of buoyant cyanobacteria while eukaryotic algae are impaired by higher sedimentation losses. Furthermore, cyanobacteria differ from eukaryotic algae in that they can fix dinitrogen, and new insights show that the nitrogen-fixation activity of heterocystous cyanobacteria can be strongly stimulated at elevated temperatures. Models and lake studies indicate that the response of cyanobacterial growth to rising CO2 concentrations and elevated temperatures can be suppressed by nutrient limitation. The greatest response of cyanobacterial blooms to climate change is therefore expected to occur in eutrophic and hypertrophic lakes.


Subject(s)
Carbon Dioxide/metabolism , Cyanobacteria/physiology , Global Warming , Eutrophication , Lakes
13.
Front Microbiol ; 6: 1367, 2015.
Article in English | MEDLINE | ID: mdl-26648931

ABSTRACT

The first step of nitrification, the oxidation of ammonia to nitrite, can be performed by ammonia-oxidizing archaea (AOA) or ammonium-oxidizing bacteria (AOB). We investigated the presence of these two groups in three structurally different types of coastal microbial mats that develop along the tidal gradient on the North Sea beach of the Dutch barrier island Schiermonnikoog. The abundance and transcription of amoA, a gene encoding for the alpha subunit of ammonia monooxygenase that is present in both AOA and AOB, were assessed and the potential nitrification rates in these mats were measured. The potential nitrification rates in the three mat types were highest in autumn and lowest in summer. AOB and AOA amoA genes were present in all three mat types. The composition of the AOA and AOB communities in the mats of the tidal and intertidal stations, based on the diversity of amoA, were similar and clustered separately from the supratidal microbial mat. In all three mats AOB amoA genes were significantly more abundant than AOA amoA genes. The abundance of neither AOB nor AOA amoA genes correlated with the potential nitrification rates, but AOB amoA transcripts were positively correlated with the potential nitrification rate. The composition and abundance of amoA genes seemed to be partly driven by salinity, ammonium, temperature, and the nitrate/nitrite concentration. We conclude that AOB are responsible for the bulk of the ammonium oxidation in these coastal microbial mats.

14.
Rapid Commun Mass Spectrom ; 29(13): 1205-14, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26395604

ABSTRACT

RATIONALE: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. METHODS: GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. RESULTS: The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. CONCLUSIONS: Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the calibration requirements are met), LC/IRMS is the technique of choice. The reasons for this are the improved precision, simpler sample preparation, and straightforward isotopic calibration.


Subject(s)
Carbon Isotopes/analysis , Chromatography, Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/methods , Calibration , Carbohydrates/analysis , Chromatography, Liquid/standards , Festuca/chemistry , Gas Chromatography-Mass Spectrometry/standards , Glucose/analysis , Mass Spectrometry/standards , Ulva/chemistry , Zea mays/chemistry
15.
Front Microbiol ; 6: 738, 2015.
Article in English | MEDLINE | ID: mdl-26257718

ABSTRACT

The fixation of dinitrogen (N2) and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pelagic nitrogen fixation by using the stable isotope technique. Alongside, we measured the diversity, abundance, and activity of nitrogen-fixing and denitrifying microorganisms at three stations in the southern North Sea. Nitrogen fixation ranged from undetectable to 2.4 nmol N L(-1) d(-1) and from undetectable to 8.2 nmol N g(-1) d(-1) in the water column and seafloor, respectively. The highest rates were measured in August at Doggersbank, both for the water column and for the seafloor. Denitrification ranged from 1.7 to 208.8 µmol m(-2) d(-1) and the highest rates were measured in May at the Oyster Grounds. DNA sequence analysis showed sequences of nifH, a structural gene for nitrogenase, related to sequences from anaerobic sulfur/iron reducers and sulfate reducers. Sequences of the structural gene for nitrite reductase, nirS, were related to environmental clones from marine sediments. Quantitative polymerase chain reaction (qPCR) data revealed the highest abundance of nifH and nirS genes at the Oyster Grounds. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) data revealed the highest nifH expression at Doggersbank and the highest nirS expression at the Oyster Grounds. The distribution of the diazotrophic and denitrifying communities seems to be subject to different selecting factors, leading to spatial and temporal separation of nitrogen fixation and denitrification. These selecting factors include temperature, organic matter availability, and oxygen concentration.

16.
FEMS Microbiol Ecol ; 91(3)2015 Mar.
Article in English | MEDLINE | ID: mdl-25764561

ABSTRACT

Denitrification was measured in three structurally different coastal microbial mats by using the stable isotope technique. The composition of the denitrifying community was determined by analyzing the nitrite reductase (nirS and nirK) genes using clone libraries and the GeoChip. The highest potential rate of denitrification (7.0 ± 1.0 mmol N m(-2) d(-1)) was observed during summer at station 1 (supra-littoral). The rates of denitrification were much lower in the stations 2 (marine) and 3 (intermediate) (respectively 0.1 ± 0.05 and 0.7 ± 0.2 mmol N m(-2) d(-1)) and showed less seasonality when compared to station 1. The denitrifying community at station 1 was also more diverse than that at station 2 and 3, which were more similar to each other than either of these stations to station 1. In all three stations, the diversity of both nirS and nirK denitrifiers was higher in summer when compared to winter. The location along the tidal gradient seems to determine the composition, diversity and activity of the denitrifier community, which may be driven by salinity, nitrate/nitrite and organic carbon. Both nirS and nirK denitrifiers are equally present and therefore they are likely to play a role in the denitrification of the microbial mats studied.


Subject(s)
Aquatic Organisms/metabolism , Bacteria/metabolism , Denitrification/genetics , Nitrite Reductases/genetics , Amino Acid Sequence , Aquatic Organisms/genetics , Bacteria/genetics , Base Sequence , DNA, Bacterial/genetics , Microbiota/genetics , Oceans and Seas , Salinity , Sequence Analysis, DNA
17.
Rev Biol Trop ; 62(3): 1251-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25412549

ABSTRACT

The genus Leptolyngbya comprises filamentous cyanobacteria that are important in rice fields. In the rhizosphere, cyanobacteria produce a variety of secondary metabolites such as auxins that are important in agriculture soil performance. To assess this, Leptolyngbya strain MMG-1, was isolated from the rhizosphere of rice plants and described. For this, the morphology of this strain was studied by light microscopy as well as by confocal laser scanning microscopy. Besides, the ability of this strain to synthesize an auxin-like bioactive com- pound was demonstrated under various culture conditions (different amounts of tryptophan; pH; different alter- nating light:dark periods; duration of the incubation). The auxin-like compound was extracted from the culture of Leptolyngbya strain MMG-1 and identified as indole-3-acetic acid (IAA) by thin layer chromatography (TLC) as well as by high performance liquid chromatography (HPLC). Our results showed that the strain required the precursor L-tryptophan for the synthesis of IAA. Leptolyngbya strain MMG-1 accumulated IAA intracellularly. The IAA secreted by Leptolyngbya strain MMG-1 was significantly correlated with the initial concentration of L-tryptophan in the medium, as well as with the duration of the incubation. The bioactivity of the secreted IAA was determined by its effect on the rooting pattern of Pisum sativum seedlings. The culture supernatant of Leptolyngbya strain MMG-1 stimulated the seedling lateral rooting, while it decreased root length. Hence, rhizospheric Leptolyngbya produced auxin under different conditions and affected the plants rooting pattern.


Subject(s)
Cyanobacteria/physiology , Indoleacetic Acids/isolation & purification , Oryza/microbiology , Cyanobacteria/chemistry , Cyanobacteria/classification , Cyanobacteria/isolation & purification
18.
Rev. biol. trop ; 62(3): 1251-1260, jul.-sep. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-753687

ABSTRACT

The genus Leptolyngbya comprises filamentous cyanobacteria that are important in rice fields. In the rhizosphere, cyanobacteria produce a variety of secondary metabolites such as auxins that are important in agriculture soil performance. To assess this, Leptolyngbya strain MMG-1, was isolated from the rhizosphere of rice plants and described. For this, the morphology of this strain was studied by light microscopy as well as by confocal laser scanning microscopy. Besides, the ability of this strain to synthesize an auxin-like bioactive compound was demonstrated under various culture conditions (different amounts of tryptophan; pH; different alternating light:dark periods; duration of the incubation). The auxin-like compound was extracted from the culture of Leptolyngbya strain MMG-1 and identified as indole-3-acetic acid (IAA) by thin layer chromatography (TLC) as well as by high performance liquid chromatography (HPLC). Our results showed that the strain required the precursor L-tryptophan for the synthesis of IAA. Leptolyngbya strain MMG-1 accumulated IAA intracellularly. The IAA secreted by Leptolyngbya strain MMG-1 was significantly correlated with the initial concentration of L-tryptophan in the medium, as well as with the duration of the incubation. The bioactivity of the secreted IAA was determined by its effect on the rooting pattern of Pisum sativum seedlings. The culture supernatant of Leptolyngbya strain MMG-1 stimulated the seedling lateral rooting, while it decreased root length. Hence, rhizospheric Leptolyngbya produced auxin under different conditions and affected the plants rooting pattern. Rev. Biol. Trop. 62 (3): 1251-1260. Epub 2014 September 01.


El género Leptolyngbya comprende cianobacterias filamentosas que son importantes en los campos de cultivo de arroz. En la rizosfera, las cianobacterias producen una variedad de metabolitos secundarios, tales como auxinas, que son importantes en el rendimiento de la agricultura del suelo. La cepa Leptolyngbya MMG-1, fue aislada de la rizosfera de plantas de arroz y se describe en este trabajo. La morfología de esta cepa se estudió por microscopía de luz, así como por microscopía confocal de barrido láser. Además, se estimó la capacidad de esta cepa para sintetizar el compuesto bioactivo auxina como se demostró en diversas condiciones de cultivo (diferentes cantidades de triptófano; pH; diferente luz alterna: períodos oscuros; duración de la incubación). La auxina se extrajo a partir del cultivo de la cepa Leptolyngbya MMG-1 y se identificó como ácido indol-3-acético (AA) por cromatografía de capa fina (TLC), así como por cromatografía líquida de alta resolución (HPLC). Nuestros resultados mostraron que la cepa requiere el precursor de L-triptófano para la síntesis de IAA. La cepa Leptolyngbya MMG-1 acumula intracelularmente IAA. El IAA secretada por la cepa Leptolyngbya MMG-1 se correlacionó significativamente con la concentración inicial de L-triptófano en el medio, así como con la duración de la incubación. La bioactividad de la IAA secretada se determinó por su efecto sobre el patrón de enraizamiento de plantas de semillero de Pisum sativum. El sobrenadante del cultivo de la cepa Leptolyngbya MMG-1 estimuló el enraizamiento lateral en la plántula, mientras que se redujo la longitud de la raíz. Por lo tanto, la producción de auxina por Leptolyngbya rizosférica afectó el crecimiento de las plantas.


Subject(s)
Cyanobacteria/physiology , Indoleacetic Acids/isolation & purification , Oryza/microbiology , Cyanobacteria/chemistry , Cyanobacteria/classification , Cyanobacteria/isolation & purification
19.
FEMS Microbiol Ecol ; 90(2): 335-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25109247

ABSTRACT

Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep and fluctuating physicochemical microgradients, that are the result of the ever changing environmental conditions and of the microorganisms' own activities, give rise to a plethora of potential niches resulting in the formation of one of the most diverse microbial ecosystems known to date. For several decades, microbial mats have been studied extensively and more recently molecular biological techniques have been introduced that allowed assessing and investigating the diversity and functioning of these systems. These investigations also involved metagenomics analyses using high-throughput DNA and RNA sequencing. Here, we summarize some of the latest developments in metagenomic analysis of three representative phototrophic microbial mat types (coastal, hot spring, and hypersaline). We also present a comparison of the available metagenomic data sets from mats emphasizing the major differences between them as well as elucidating the overlap in overall community composition.


Subject(s)
Ecosystem , Geologic Sediments/microbiology , Metagenomics , Seawater/microbiology , Biofilms , Estuaries , Hot Springs/microbiology , Phylogeny , Salinity
20.
Rapid Commun Mass Spectrom ; 28(12): 1401-11, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24797952

ABSTRACT

RATIONALE: Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios ((13)C/(12)C) in biological metabolites, at their natural abundance. However, until now this technique could not be applied for the analysis of nucleic acids, the building blocks of the carriers of genetic information in living cells and viruses, DNA and RNA. METHODS: Mixed-mode chromatography (MMC) was applied to obtain the complete separation of nine nucleotides (eight originating from DNA/RNA and one nucleotide (inosine monophosphate) that may serve as an internal standard) in a single run using LC/IRMS. We also developed and validated a method for DNA and RNA extraction and an enzymatic hydrolysis protocol for natural samples, which is compatible with LC/IRMS analysis as it minimizes the carbon blank. The method was used to measure the concentration and stable carbon isotope ratio of DNA and RNA nucleotides in marine sediment and in the common marine macro alga (Ulva sp.) at natural abundance levels as well as for (13)C-enriched samples. RESULTS: The detection limit of the LC/IRMS method varied between 1.0 nmol for most nucleotides and 2.0 nmol for late-eluting compounds. The intraday and interday reproducibility of nucleotide concentration measurements was better than, respectively, 4.1% and 8.9% and for δ(13)C measurements better than, respectively, 0.3‰ and 0.5‰. The obtained nucleic acid concentrations and nucleic acid synthesis rates were in good agreement with values reported in the literature. CONCLUSIONS: This new method gives reproducible results for the concentration and δ(13)C values of nine nucleotides. This solvent-free chromatographic method may also be used for other purposes, such as for instance to determine nucleotide concentrations using spectrophotometric detection. This sensitive method offers a new avenue for the study of DNA and RNA biosynthesis that can be applied in various fields of research.


Subject(s)
Chlorophyta/chemistry , Chromatography, High Pressure Liquid/methods , DNA/analysis , Diatoms/chemistry , Mass Spectrometry/methods , Nucleotides/chemistry , RNA/analysis , Carbon Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...