Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Proc Natl Acad Sci U S A ; 121(19): e2300606121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683979

ABSTRACT

ß-catenin has influential roles affecting embryonic development, tissue homeostasis, and human diseases including cancer. Cellular ß-catenin levels are exquisitely controlled by a variety of regulatory mechanisms. In the course of exploring the functions of the Nek10 tyrosine kinase, we observed that deletion of Nek10 in lung adenocarcinoma cells resulted in dramatic stabilization of ß-catenin, suggestive of a Nek10 role in the control of ß-catenin turnover. Nek10-deficient cells exhibited diminished ability to form tumorspheres in suspension, grow in soft agar, and colonize mouse lung tissue following tail vein injection. Mechanistically, Nek10 associates with the Axin complex, responsible for ß-catenin degradation, where it phosphorylates ß-catenin at Tyr30, located within the regulatory region governing ß-catenin turnover. In the absence of Nek10 phosphorylation, GSK3-mediated phosphorylation of ß-catenin, a prerequisite for its turnover, is impaired. This represents a divergent function within the Nek family, whose other members are serine-threonine kinases involved in different elements of the centrosomal cycle, primary cilia function, and DNA damage responses.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , NIMA-Related Kinases , beta Catenin , Animals , Humans , Mice , A549 Cells , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , beta Catenin/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , NIMA-Related Kinases/metabolism , NIMA-Related Kinases/genetics , Phosphorylation , Tyrosine/metabolism
2.
Cell Rep ; 42(11): 113251, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37913774

ABSTRACT

Breast cancer (BC) prognosis and outcome are adversely affected by obesity. Hyperinsulinemia, common in the obese state, is associated with higher risk of death and recurrence in BC. Up to 80% of BCs overexpress the insulin receptor (INSR), which correlates with worse prognosis. INSR's role in mammary tumorigenesis was tested by generating MMTV-driven polyoma middle T (PyMT) and ErbB2/Her2 BC mouse models, respectively, with coordinate mammary epithelium-restricted deletion of INSR. In both models, deletion of either one or both copies of INSR leads to a marked delay in tumor onset and burden. Longitudinal phenotypic characterization of mouse tumors and cells reveals that INSR deletion affects tumor initiation, not progression and metastasis. INSR upholds a bioenergetic phenotype in non-transformed mammary epithelial cells, independent of its kinase activity. Similarity of phenotypes elicited by deletion of one or both copies of INSR suggest a dose-dependent threshold for INSR impact on mammary tumorigenesis.


Subject(s)
Mammary Neoplasms, Experimental , Receptor, Insulin , Mice , Animals , Receptor, Insulin/genetics , Neoplasm Recurrence, Local , Cell Transformation, Neoplastic/genetics , Epithelial Cells/pathology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice, Transgenic
3.
J Clin Oncol ; 41(35): 5356-5362, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37695982

ABSTRACT

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned coprimary or secondary analyses are not yet available. Clinical trial updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.Metformin has been associated with lower cancer risk in epidemiologic and preclinical research. In the MA.32 randomized adjuvant breast cancer trial, metformin (v placebo) did not affect invasive disease-free or overall survival. Here, we report metformin effects on the risk of new cancer. Between 2010 and 2013, 3,649 patients with breast cancer younger than 75 years without diabetes with high-risk T1-3, N0-3 M0 breast cancer (any estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2) were randomly assigned to metformin 850 mg orally twice a day or placebo twice a day for 5 years. New primary invasive cancers (outside the ipsilateral breast) developing as a first event were identified. Time to events was described by the competing risks method; two-sided likelihood ratio tests adjusting for age, BMI, smoking, and alcohol intake were used to compare metformin versus placebo arms. A total of 184 patients developed new invasive cancers: 102 metformin and 82 placebo, hazard ratio (HR), 1.25; 95% CI, 0.94 to 1.68; P = .13. These included 48 contralateral invasive breast cancers (27 metformin v 21 placebo), HR, 1.29; 95% CI, 0.72 to 2.27; P = .40 and 136 new nonbreast primary cancers (75 metformin v 61 placebo), HR, 1.24; 95% CI, 0.88 to 1.74; P = .21. Metformin did not reduce the risk of new cancer development in these nondiabetic patients with breast cancer.


Subject(s)
Breast Neoplasms , Metformin , Female , Humans , Breast Neoplasms/drug therapy , Canada/epidemiology , Double-Blind Method , Metformin/therapeutic use
4.
Sci Rep ; 12(1): 10290, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717344

ABSTRACT

The extracellular matrix (ECM) collagen undergoes major remodeling during tumorigenesis. However, alterations to the ECM are not widely considered in cancer diagnostics, due to mostly uniform appearance of collagen fibers in white light images of hematoxylin and eosin-stained (H&E) tissue sections. Polarimetric second-harmonic generation (P-SHG) microscopy enables label-free visualization and ultrastructural investigation of non-centrosymmetric molecules, which, when combined with texture analysis, provides multiparameter characterization of tissue collagen. This paper demonstrates whole slide imaging of breast tissue microarrays using high-throughput widefield P-SHG microscopy. The resulting P-SHG parameters are used in classification to differentiate tumor from normal tissue, resulting in 94.2% for both accuracy and F1-score, and 6.3% false discovery rate. Subsequently, the trained classifier is employed to predict tumor tissue with 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate. As such, we show that widefield P-SHG microscopy reveals collagen ultrastructure over large tissue regions and can be utilized as a sensitive biomarker for cancer diagnostics and prognostics studies.


Subject(s)
Neoplasms , Second Harmonic Generation Microscopy , Collagen/chemistry , Extracellular Matrix/pathology , Machine Learning , Neoplasms/diagnosis , Neoplasms/pathology , Prognosis , Second Harmonic Generation Microscopy/methods
5.
JAMA ; 327(20): 1963-1973, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35608580

ABSTRACT

Importance: Metformin, a biguanide commonly used to treat type 2 diabetes, has been associated with potential beneficial effects across breast cancer subtypes in observational and preclinical studies. Objective: To determine whether the administration of adjuvant metformin (vs placebo) to patients with breast cancer without diabetes improves outcomes. Design, Setting, and Participants: MA.32, a phase 3 randomized, placebo-controlled, double-blind trial, conducted in Canada, Switzerland, US, and UK, enrolled 3649 patients with high-risk nonmetastatic breast cancer receiving standard therapy between August 2010 and March 2013, with follow-up to October 2020. Interventions: Patients were randomized (stratified for hormone receptor [estrogen receptor and/or progesterone receptor {ER/PgR}] status, positive vs negative; body mass index, ≤30 vs >30; human epidermal growth factor receptor 2 [ERBB2, formerly HER2 or HER2/neu], positive vs negative; and any vs no chemotherapy) to 850 mg of oral metformin twice a day (n = 1824) or oral placebo twice a day (n = 1825) for 5 years. Main Outcomes and Measures: The primary outcome was invasive disease-free survival in hormone receptor-positive breast cancer. Of the 8 secondary outcomes, overall survival, distant relapse-free survival, and breast cancer-free interval were analyzed. Results: Of the 3649 randomized patients (mean age, 52.4 years; 3643 women [99.8%]), all (100%) were included in analyses. After a second interim analysis, futility was declared for patients who were ER/PgR-, so the primary analysis was conducted for 2533 patients who were ER/PgR+. The median duration of follow-up in the ER/PgR+ group was 96.2 months (range, 0.2-121 months). Invasive disease-free survival events occurred in 465 patients who were ER/PgR+. The incidence rates for invasive disease-free survival events were 2.78 per 100 patient-years in the metformin group vs 2.74 per 100 patient-years in the placebo group (hazard ratio [HR], 1.01; 95% CI, 0.84-1.21; P = .93), and the incidence rates for death were 1.46 per 100 patient-years in the metformin group vs 1.32 per 100 patient-years in the placebo group (HR, 1.10; 95% CI, 0.86-1.41; P = .47). Among patients who were ER/PgR-, followed up for a median of 94.1 months, incidence of invasive disease-free survival events was 3.58 vs 3.60 per 100 patient-years, respectively (HR, 1.01; 95% CI, 0.79-1.30; P = .92). None of the 3 secondary outcomes analyzed in the ER/PgR+ group had statistically significant differences. Grade 3 nonhematological toxic events occurred more frequently in patients taking metformin than in patients taking placebo (21.5% vs 17.5%, respectively, P = .003). The most common grade 3 or higher adverse events in the metformin vs placebo groups were hypertension (2.4% vs 1.9%), irregular menses (1.5% vs 1.4%), and diarrhea (1.9% vs 7.0%). Conclusions and Relevance: Among patients with high-risk operable breast cancer without diabetes, the addition of metformin vs placebo to standard breast cancer treatment did not significantly improve invasive disease-free survival. Trial Registration: ClinicalTrials.gov Identifier: NCT01101438.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Metformin , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Disease-Free Survival , Double-Blind Method , Female , Humans , Male , Metformin/administration & dosage , Metformin/adverse effects , Metformin/therapeutic use , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/therapeutic use , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism
6.
JNCI Cancer Spectr ; 5(5)2021 10.
Article in English | MEDLINE | ID: mdl-34485814

ABSTRACT

Background: Circulating levels of cancer antigen (CA) 15-3, a tumor marker and regulator of cellular metabolism, were reduced by metformin in a nonrandomized neoadjuvant study. We examined the effects of metformin (vs placebo) on CA 15-3 in participants of MA.32, a phase III randomized trial in early-stage breast cancer. Methods: A total of 3649 patients with T1-3, N0-3, M0 breast cancer were randomly assigned; pretreatment and 6-month on-treatment fasting plasma were centrally assayed for CA 15-3. Genomic DNA was analyzed for the rs11212617 single nucleotide polymorphism. Absolute and relative change of CA 15-3 (metformin vs placebo) were compared using Wilcoxon rank and t tests. Regression models adjusted for baseline differences and assessed key interactions. All statistical tests were 2-sided. Results: Mean (SD) age was 52.4 (10.0) years. The majority of patients had T2/3, node-positive, hormone receptor-positive, HER2-negative breast cancer treated with (neo)adjuvant chemotherapy and hormone therapy. Mean (SD) baseline CA 15-3 was 17.7 (7.6) and 18.0 (8.1 U/mL). At 6 months, CA 15-3 was statistically significantly reduced in metformin vs placebo arms (absolute geometric mean reduction in CA 15-3 = 7.7% vs 2.0%, P < .001; relative metformin: placebo level of CA 15-3 [adjusted for age, baseline body mass index, and baseline CA 15-3] = 0.94, 95% confidence interval = 0.92 to 0.96). This reduction was independent of tumor characteristics, perioperative systemic therapy, baseline body mass index, insulin, and the single nucleotide polymorphism status (all Ps > .11). Conclusions: Our observation that metformin reduces CA 15-3 by approximately 6% was corroborated in a large placebo-controlled randomized trial. The clinical implications of this reduction in CA 15-3 will be explored in upcoming efficacy analyses of breast cancer outcomes in MA.32.


Subject(s)
Breast Neoplasms/blood , Metformin/therapeutic use , Mucin-1/blood , Body Mass Index , Breast Neoplasms/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Chemotherapy, Adjuvant , Fasting/blood , Female , Humans , Middle Aged , Mucin-1/drug effects , Placebos/therapeutic use , Polymorphism, Single Nucleotide
7.
NPJ Breast Cancer ; 7(1): 74, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34103538

ABSTRACT

Metformin may exert anticancer effects through indirect (mediated by metabolic changes) or direct mechanisms. The goal was to examine metformin impact on metabolic factors in non-diabetic subjects and determine whether this impact varies by baseline BMI, insulin, and rs11212617 SNP in CCTG MA.32, a double-blind placebo-controlled randomized adjuvant breast cancer (BC) trial. 3649 subjects with T1-3, N0-3, M0 BC were randomized; pretreatment and 6-month on-treatment fasting plasma was centrally assayed for insulin, leptin, highly sensitive C-reactive protein (hsCRP). Glucose was measured locally and homeostasis model assessment (HOMA) calculated. Genomic DNA was analyzed for the rs11212617 SNP. Absolute and relative change of metabolic factors (metformin versus placebo) were compared using Wilcoxon rank and t-tests. Regression models were adjusted for baseline differences and assessed interactions with baseline BMI, insulin, and the SNP. Mean age was 52 years. The majority had T2/3, node positive, hormone receptor positive, HER2 negative BC treated with (neo)adjuvant chemotherapy and hormone therapy. Median baseline body mass index (BMI) was 27.4 kg/m2 (metformin) and 27.3 kg/m2 (placebo). Median weight change was -1.4 kg (metformin) vs +0.5 kg (placebo). Significant improvements were seen in all metabolic factors, with 6 month standardized ratios (metformin/placebo) of 0.85 (insulin), 0.83 (HOMA), 0.80 (leptin), and 0.84 (hsCRP), with no qualitative interactions with baseline BMI or insulin. Changes did not differ by rs11212617 allele. Metformin (vs placebo) led to significant improvements in weight and metabolic factors; these changes did not differ by rs11212617 allele status.

8.
Cell Death Differ ; 28(11): 3036-3051, 2021 11.
Article in English | MEDLINE | ID: mdl-34059798

ABSTRACT

The tumor suppressor PTEN is disrupted in a large proportion of cancers, including in HER2-positive breast cancer, where its loss is associated with resistance to therapy. Upon genotoxic stress, ataxia telangiectasia mutated (ATM) is activated and phosphorylates PTEN on residue 398. To elucidate the physiological role of this molecular event, we generated and analyzed knock-in mice expressing a mutant form of PTEN that cannot be phosphorylated by ATM (PTEN-398A). This mutation accelerated tumorigenesis in a model of HER2-positive breast cancer. Mammary tumors in bi-transgenic mice carrying MMTV-neu and Pten398A were characterized by DNA damage accumulation but reduced apoptosis. Mechanistically, phosphorylation of PTEN at position 398 is essential for the proper activation of the S phase checkpoint controlled by the PI3K-p27Kip1-CDK2 axis. Moreover, we linked these defects to the impaired ability of the PTEN-398A protein to relocalize to the plasma membrane in response to genotoxic stress. Altogether, our results uncover a novel role for ATM-dependent PTEN phosphorylation in the control of genomic stability, cell cycle progression, and tumorigenesis.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Breast Neoplasms/genetics , Cell Cycle Checkpoints/genetics , PTEN Phosphohydrolase/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Carcinogenesis , Cell Cycle , Female , Humans , Mammary Neoplasms, Animal , Mice
9.
PLoS One ; 16(5): e0252252, 2021.
Article in English | MEDLINE | ID: mdl-34015029

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0152259.].

10.
J Natl Cancer Inst ; 113(2): 192-198, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33527137

ABSTRACT

BACKGROUND: Metformin has been associated with lower breast cancer (BC) risk and improved outcomes in observational studies. Multiple biologic mechanisms have been proposed, including a recent report of altered sex hormones. We evaluated the effect of metformin on sex hormones in MA.32, a phase III trial of nondiabetic BC subjects who were randomly assigned to metformin or placebo. METHODS: We studied the subgroup of postmenopausal hormone receptor-negative BC subjects not receiving endocrine treatment who provided fasting blood at baseline and at 6 months after being randomly assigned. Sex hormone-binding globulin, bioavailable testosterone, and estradiol levels were assayed using electrochemiluminescence immunoassay. Change from baseline to 6 months between study arms was compared using Wilcoxon sum rank tests and regression models. RESULTS: 312 women were eligible (141 metformin vs 171 placebo); the majority of subjects in each arm had T1/2, N0, HER2-negative BC and had received (neo)adjuvant chemotherapy. Mean age was 58.1 (SD=6.9) vs 57.5 (SD=7.9) years, mean body mass index (BMI) was 27.3 (SD=5.5) vs 28.9 (SD=6.4) kg/m2 for metformin vs placebo, respectively. Median estradiol decreased between baseline and 6 months on metformin vs placebo (-5.7 vs 0 pmol/L; P < .001) in univariable analysis and after controlling for baseline BMI and BMI change (P < .001). There was no change in sex hormone-binding globulin or bioavailable testosterone. CONCLUSION: Metformin lowered estradiol levels, independent of BMI. This observation suggests a new metformin effect that has potential relevance to estrogen sensitive cancers.


Subject(s)
Breast Neoplasms/drug therapy , Gonadal Steroid Hormones/antagonists & inhibitors , Metformin/administration & dosage , Body Mass Index , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estradiol/genetics , Female , Gonadal Steroid Hormones/genetics , Humans , Middle Aged , Receptor, ErbB-2/genetics , Testosterone/antagonists & inhibitors , Testosterone/genetics
11.
J Clin Invest ; 131(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33444287

ABSTRACT

In order to sustain proficient life-long hematopoiesis, hematopoietic stem cells (HSCs) must possess robust mechanisms to preserve their quiescence and genome integrity. DNA-damaging stress can perturb HSC homeostasis by affecting their survival, self-renewal, and differentiation. Ablation of the kinase ataxia telangiectasia mutated (ATM), a master regulator of the DNA damage response, impairs HSC fitness. Paradoxically, we show here that loss of a single allele of Atm enhances HSC functionality in mice. To explain this observation, we explored a possible link between ATM and the tumor suppressor phosphatase and tensin homolog (PTEN), which also regulates HSC function. We generated and analyzed a knockin mouse line (PtenS398A/S398A), in which PTEN cannot be phosphorylated by ATM. Similar to Atm+/-, PtenS398A/S398A HSCs have enhanced hematopoietic reconstitution ability, accompanied by resistance to apoptosis induced by genotoxic stress. Single-cell transcriptomic analyses and functional assays revealed that dormant PtenS398A/S398A HSCs aberrantly tolerate elevated mitochondrial activity and the accumulation of reactive oxygen species, which are normally associated with HSC priming for self-renewal or differentiation. Our results unveil a molecular connection between ATM and PTEN, which couples the response to genotoxic stress and dormancy in HSCs.


Subject(s)
Apoptosis , Cell Differentiation , DNA Damage , Hematopoietic Stem Cells/metabolism , PTEN Phosphohydrolase/metabolism , Amino Acid Substitution , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Mice , Mice, Transgenic , Mutation, Missense , PTEN Phosphohydrolase/genetics
12.
Cell Rep ; 31(13): 107830, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32610131

ABSTRACT

The kinetics of circulating cell-free DNA (cfDNA) release may provide a real-time assessment of induced cell death. However, there is a limited understanding of the underlying biological rationale for cfDNA release following distinct treatments and cell death mechanisms. Here, we uncover a complex interplay between apoptosis, necrosis, and senescence in determining cfDNA release kinetics. Utilizing multiple in vitro and in vivo preclinical models, we show how cfDNA release is modulated through a combination of apoptotic and senescent triggers and inhibitors. Interestingly, we identify treatment-induced senescence as a previously unrecognized determinant of cfDNA kinetics that can counteract its release. Necrosis is the predominant cell death mechanism that consistently contributes to cfDNA release in response to ionizing radiation, and, surprisingly, apoptosis plays a comparatively minor role in some tumors. Based on our results, we propose a model to explain cfDNA release from cells over time, with important implications for future studies.


Subject(s)
Apoptosis , Cell-Free Nucleic Acids/metabolism , Cellular Senescence , Animals , Cell Line, Tumor , DNA Damage , Humans , Kinetics , Male , Mice, Inbred NOD , Mice, SCID , Necrosis , Xenograft Model Antitumor Assays
13.
Oncogene ; 39(30): 5252-5266, 2020 07.
Article in English | MEDLINE | ID: mdl-32561851

ABSTRACT

In response to genotoxic stress, multiple kinase signaling cascades are activated, many of them directed towards the tumor suppressor p53, which coordinates the DNA damage response (DDR). Defects in DDR pathways lead to an accumulation of mutations that can promote tumorigenesis. Emerging evidence implicates multiple members of the NimA-related kinase (NEK) family (NEK1, NEK10, and NEK11) in the DDR. Here, we describe a function for NEK10 in the regulation of p53 transcriptional activity through tyrosine phosphorylation. NEK10 loss increases cellular proliferation by modulating the p53-dependent transcriptional output. NEK10 directly phosphorylates p53 on Y327, revealing NEK10's unexpected substrate specificity. A p53 mutant at this site (Y327F) acts as a hypomorph, causing an attenuated p53-mediated transcriptional response. Consistently, NEK10-deficient cells display heightened sensitivity to DNA-damaging agents. Further, a combinatorial score of NEK10 and TP53-target gene expression is an independent predictor of a favorable outcome in breast cancers.


Subject(s)
Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Mutation , NIMA-Related Kinases/genetics , Tumor Suppressor Protein p53/genetics , A549 Cells , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cisplatin/pharmacology , Gene Deletion , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , HEK293 Cells , Humans , MCF-7 Cells , NIMA-Related Kinases/deficiency , Phosphorylation/drug effects , Substrate Specificity , Tumor Suppressor Protein p53/metabolism , Tyrosine/genetics , Tyrosine/metabolism
14.
NPJ Breast Cancer ; 6: 22, 2020.
Article in English | MEDLINE | ID: mdl-32566743

ABSTRACT

Studies have suggested that women with elevated BMI or 25-OH vitamin D levels may derive less benefit from AIs versus tamoxifen. We prospectively investigated whether high BMI or 25-OH vitamin D levels were associated with higher estrogen levels in post-menopausal women receiving standard adjuvant letrozole (2.5 mg/day). Furthermore, we evaluated whether an increased dose of letrozole resulted in lower serum estrogens in women with BMI > 25 kg/m2. Correlation between entry BMI and day 29 serum biomarkers (estrogens, 25-OH vitamin D, insulin, CRP, leptin) was assessed in all patients. On day 29, participants with BMI > 25 kg/m2 switched to letrozole 5 mg/day for 4-weeks and blood was drawn upon completion of the study. The change in serum estrogen levels was assessed in these patients (BMI > 25 kg/m2). 112 patients completed days 1-28. The Pearson correlations of estradiol and estrone with BMI or serum 25-OH vitamin D levels were near zero (-0.04 to 0.07, p = 0.48-0.69). Similar results were obtained for correlation with markers of obesity (insulin, CRP, and leptin) with estradiol and estrone (-0.15 to 0.12; p = 0.11-0.82). Thirty-one patients (BMI > 25 kg/m2) completed the interventional component; Increasing the dose of letrozole did not further reduce estradiol or estrone levels (change 0.1 and 0.4 pmol/L respectively; p = 0.74 and 0.36). There was no observed association between markers of obesity (BMI, insulin, leptin, and CRP), serum 25-OH vitamin D levels and estradiol or estrone levels. Additionally, an increased dose of letrozole did not further reduce estradiol or estrone levels compared to the standard dose.

15.
JNCI Cancer Spectr ; 4(1): pkz097, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32206745
17.
Article in English | MEDLINE | ID: mdl-31712221

ABSTRACT

For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.


Subject(s)
Cell Nucleus/metabolism , DNA Repair , PTEN Phosphohydrolase/metabolism , Animals , Apoptosis , Cell Cycle , DNA Replication , Humans , PTEN Phosphohydrolase/deficiency , Signal Transduction
18.
Breast ; 48: 17-23, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31472446

ABSTRACT

OBJECTIVES: Pre-clinical data suggest metformin might enhance the effect of chemotherapy in breast cancer (BC). We conducted a Phase II randomized trial of chemotherapy plus metformin versus placebo in metastatic breast cancer (MBC). MATERIAL AND METHODS: In this double blind phase II trial we randomly assigned non-diabetic MBC patients on 1st to 4th line chemotherapy to receive metformin 850 mg po bid or placebo bid. Primary outcome was progression-free survival (PFS); secondary outcomes included overall survival (OS), response rate (RR), toxicity and quality of life (QOL). With 40 subjects and a type-one error of 0.2 (one-sided), a PFS hazard ratio (HR) of 0.58 could be detected with 80% power. RESULTS: 40 patients were randomized (22 metformin, 18 placebo) with a mean age of 55 vs 57 years and ER/PR positive BC in 86.4% vs 83.3% off metformin vs placebo, respectively. Mean BMI was 27kg/m2 in both arms. The majority of patients were on 1st line chemotherapy. Grade 3-4 toxicity occurred in 31.8% (metformin) vs 58.8% (placebo). Best response: Partial response 18.2% metformin vs 25% placebo, stable disease 36.4% metformin vs 18.8% placebo, progressive disease 45.4% metformin vs 56.2% placebo. Mean PFS was 5.4 vs 6.3 months (metformin vs placebo), HR 1.2 (95% CI 0.63-2.31). Mean OS was 20.2 (metformin) vs 24.2 months (placebo), HR 1.68 (95% CI 0.79-3.55). CONCLUSION: In this population metformin showed no significant effect on RR, PFS or OS. These results do not support the use of metformin with chemotherapy in non-diabetic MBC patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Adult , Aged , Breast Neoplasms/pathology , Double-Blind Method , Female , Humans , Middle Aged , Progression-Free Survival , Quality of Life , Survival Rate
19.
Elife ; 82019 05 24.
Article in English | MEDLINE | ID: mdl-31124786

ABSTRACT

Human NimA-related kinases (Neks) have multiple mitotic and non-mitotic functions, but few substrates are known. We systematically determined the phosphorylation-site motifs for the entire Nek kinase family, except for Nek11. While all Nek kinases strongly select for hydrophobic residues in the -3 position, the family separates into four distinct groups based on specificity for a serine versus threonine phospho-acceptor, and preference for basic or acidic residues in other positions. Unlike Nek1-Nek9, Nek10 is a dual-specificity kinase that efficiently phosphorylates itself and peptide substrates on serine and tyrosine, and its activity is enhanced by tyrosine auto-phosphorylation. Nek10 dual-specificity depends on residues in the HRD+2 and APE-4 positions that are uncommon in either serine/threonine or tyrosine kinases. Finally, we show that the phosphorylation-site motifs for the mitotic kinases Nek6, Nek7 and Nek9 are essentially identical to that of their upstream activator Plk1, suggesting that Nek6/7/9 function as phospho-motif amplifiers of Plk1 signaling.


Subject(s)
NIMA-Related Kinases/metabolism , Signal Transduction , Substrate Specificity , Humans , NIMA-Related Kinases/chemistry , Phosphorylation , Serine/metabolism , Threonine/metabolism
20.
JNCI Cancer Spectr ; 3(4): pkz049, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32337478

ABSTRACT

Late disease recurrence (more than 5 years after initial diagnosis) represents a clinical challenge in the treatment and management of estrogen receptor-positive breast cancer (BC). An international workshop was convened in Toronto, Canada, in February 2018 to review the current understanding of late recurrence and to identify critical issues that require future study. The underlying biological causes of late recurrence are complex, with the processes governing cancer cell dormancy, including immunosurveillance, cell proliferation, angiogenesis, and cellular stemness, being integral to disease progression. These critical processes are described herein as well as their role in influencing risk of recurrence. Moreover, observational and interventional clinical trials are proposed, with a focus on methods to identify patients at risk of recurrence and possible strategies to combat this in patients with estrogen receptor-positive BC. Because the problem of late BC recurrence of great importance, recent advances in disease detection and patient monitoring should be incorporated into novel clinical trials to evaluate approaches to enhance patient management. Indeed, future research on these issues is planned and will offer new options for effective late recurrence treatment and prevention strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...