Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Infect Dis Ther ; 12(10): 2485-2494, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37798469

ABSTRACT

INTRODUCTION: Daptomycin (DAP) has proven to be a viable alternative amid vancomycin resistance; however, the use of DAP post vancomycin treatment has led to the development of DAP non-susceptible (DNS) strains. Dalbavancin (DAL), a novel single-dosed lipoglycopeptide, has shown enhanced activity against highly resistant Staphylococcus aureus strains. However, on the basis of previous reports and our observations, DAL does not demonstrate similar activity at high versus low inoculum levels. Therefore, we hypothesized that addition of DAP even at minimal concentrations (single dose on day 1) will lower the inoculum to the level that can be cleared by dalbavancin. METHODS: Isolates from methicillin-resistant S. aureus (MRSA)-infected patients with varying susceptibility profiles were evaluated using broth microdilution methods. Two DNS-VISA strains (vancomycin intermediate resistant S. aureus) and one MRSA strain were further evaluated in a one-compartment PK/PD model using a high starting initial inoculum of 109 CFU/mL as well as low initial inoculum of 107 CFU/mL over 168 h to assess the activity of DAL and DAP monotherapy and in combination. RESULTS: Single therapies were not bactericidal when evaluated in the 168 h in vitro one-compartment model with an initial inoculum of 109; however, the combination of DAL plus single dose of DAP resulted in enhanced killing at the end of the 168-h exposure. DAL single therapy caused reduction in colony counts down to detection limit (2 log10 CFU/ml) at a lower inoculum but did not show enhancement (< 2 log10 CFU/ml) at higher initial inoculums (P < 0.01) for all three strains. Similarly, DAP caused initial bacterial reduction up to 4 log10 CFU/ml with regrowth at about 32 h of exposure, which stayed at initial inoculum levels for the duration of the model for all three strains. CONCLUSIONS: Dalbavancin inoculum effect is a major issue in bacterial infections with high bacterial loads and the combination of DAL plus single dose of DAP showed promise in eradicating resistant S. aureus strains at high inoculums.

2.
Microbiol Spectr ; 11(3): e0491822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199616

ABSTRACT

Phage therapy has gained attention due to the spread of antibiotic-resistant bacteria and narrow pipeline of novel antibiotics. Phage cocktails are hypothesized to slow the overall development of resistance by challenging the bacteria with more than one phage. Here, we have used a combination of plate-, planktonic-, and biofilm-based screening assays to try to identify phage-antibiotic combinations that will eradicate preformed biofilms of Staphylococcus aureus strains that are otherwise difficult to kill. We have focused on methicillin-resistant S aureus (MRSA) strains and their daptomycin-nonsusceptible vancomycin-intermediate (DNS-VISA) derivatives to understand whether the phage-antibiotic interactions are altered by the changes associated with evolution from MRSA to DNS-VISA (which is known to occur in patients receiving antibiotic therapy). We evaluated the host range and cross-resistance patterns of five obligately lytic S. aureus myophages to select a three-phage cocktail. We screened these phages for their activity against 24-h bead biofilms and found that biofilms of two strains, D712 (DNS-VISA) and 8014 (MRSA), were the most resistant to killing by single phages. Specifically, even initial phage concentrations of 107 PFU per well could not prevent visible regrowth of bacteria from the treated biofilms. However, when we treated biofilms of the same two strains with phage-antibiotic combinations, we prevented bacterial regrowth when using up to 4 orders of magnitude less phage and antibiotic concentrations that were lower than our measured minimum biofilm inhibitory concentration. We did not see a consistent association between phage activity and the evolution of DNS-VISA genotypes in this small number of bacterial strains. IMPORTANCE The extracellular polymeric matrix of biofilms presents an impediment to antibiotic diffusion, facilitating the emergence of multidrug-resistant populations. While most phage cocktails are designed for the planktonic state of bacteria, it is important to take the biofilm mode of growth (the predominant mode of bacterial growth in nature) into consideration, as it is unclear how interactions between any specific phage and its bacterial hosts will depend on the physical properties of the growth environment. In addition, the extent of bacterial sensitivity to any given phage may vary from the planktonic to the biofilm state. Therefore, phage-containing treatments targeting biofilm infections such as catheters and prosthetic joint material may not be merely based on host range characteristics. Our results open avenues to new questions regarding phage-antibiotic treatment efficiency in the eradication of topologically structured biofilm settings and the extent of eradication efficacy relative to the single agents in biofilm populations.


Subject(s)
Bacteriophages , Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Vancomycin , Microbial Sensitivity Tests
3.
Antimicrob Agents Chemother ; 67(6): e0131722, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37222591

ABSTRACT

Biofilm-associated infections lead to substantial morbidity. Omadacycline (OMC) is a novel aminomethylcycline with potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis, but data surrounding its use in biofilm-associated infections are lacking. We investigated the activity of OMC alone and in combination with rifampin (RIF) against 20 clinical strains of staphylococci in multiple in vitro biofilm analyses, including an in vitro pharmacokinetic/pharmacodynamic (PK/PD) CDC biofilm reactor (CBR) model (simulating human exposures). The observed MICs for OMC demonstrated potent activity against the evaluated strains (0.125 to 1 mg/L), with an increase of MICs generally observed in the presence of biofilm (0.25 to >64 mg/L). Furthermore, RIF was shown to reduce OMC biofilm MICs (bMICs) in 90% of strains, and OMC plus RIF combination in biofilm time-kill analyses (TKAs) exhibited synergistic activity in most of the strains. Within the PK/PD CBR model, OMC monotherapy primarily displayed bacteriostatic activity, while RIF monotherapy generally exhibited initial bacterial eradication, followed by rapid regrowth likely due to the emergence of RIF resistance (RIF bMIC, >64 mg/L). However, the combination of OMC plus RIF produced rapid and sustained bactericidal activity in nearly all the strains (3.76 to 4.03 log10 CFU/cm2 reductions from starting inoculum in strains in which bactericidal activity was reached). Furthermore, OMC was shown to prevent the emergence of RIF resistance. Our data provide preliminary evidence that OMC in combination with RIF could be a viable option for biofilm-associated infections with S. aureus and S. epidermidis. Further research involving OMC in biofilm-associated infections is warranted.


Subject(s)
Rifampin , Staphylococcal Infections , Humans , Rifampin/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Staphylococcus epidermidis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Biofilms , Microbial Sensitivity Tests
4.
Microbiol Spectr ; 10(2): e0041122, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35348366

ABSTRACT

Bacterial biofilms are difficult to eradicate and can complicate many infections by forming on tissues and medical devices. Phage+antibiotic combinations (PAC) may be more active on biofilms than either type of agent alone, but it is difficult to predict which PAC regimens will be reliably effective. To establish a method for screening PAC combinations against Staphylococcus aureus biofilms, we conducted biofilm time-kill analyses (TKA) using various combinations of phage Sb-1 with clinically relevant antibiotics. We determined the activity of PAC against biofilm versus planktonic bacteria and investigated the emergence of resistance during (24 h) exposure to PAC. As expected, fewer treatment regimens were effective against biofilm than planktonic bacteria. In experiments with isogenic strain pairs, we also saw less activity of PACs against DNS-VISA mutants versus their respective parentals. The most effective treatment against both biofilm and planktonic bacteria was the phage+daptomycin+ceftaroline regimen, which met our stringent definition of bactericidal activity (>3 log10 CFU/mL reduction). With the VISA-DNS strain 8015 and DNS strain 684, we detected anti-biofilm synergy between Sb-1 and DAP in the phage+daptomycin regimen (>2 log10 CFU/mL reduction versus best single agent). We did not observe any bacterial resensitization to antibiotics following treatment, but phage resistance was avoided after exposure to PAC regimens for all tested strains. The release of bacterial membrane vesicles tended to be either unaffected or reduced by the various treatment regimens. Interestingly, phage yields from certain biofilm experiments were greater than from similar planktonic experiments, suggesting that Sb-1 might be more efficiently propagated on biofilm. IMPORTANCE Biofilm-associated multidrug-resistant infections pose significant challenges for antibiotic therapy. The extracellular polymeric matrix of biofilms presents an impediment for antibiotic diffusion, facilitating the emergence of multidrug-resistant populations. Some bacteriophages (phages) can move across the biofilm matrix, degrade it, and support antibiotic penetration. However, little is known about how phages and their hosts interact in the biofilm environment or how different phage+antibiotic combinations (PACs) impact biofilms in comparison to the planktonic state of bacteria, though scattered data suggest that phage+antibiotic synergy occurs more readily under biofilm-like conditions. Our results demonstrated that phage Sb-1 can infect MRSA strains both in biofilm and planktonic states and suggested PAC regimens worthy of further investigation as adjuncts to antibiotics.


Subject(s)
Bacteriophages , Daptomycin , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Daptomycin/pharmacology
5.
Antimicrob Agents Chemother ; 66(1): e0162321, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34723631

ABSTRACT

Enterococcus faecium is a significant multidrug-resistant pathogen. Bacteriophage cocktails are being proposed to complement antibiotic therapy. After a screen of 8 E. faecium strains against 4 phages, 2 phages (113 and 9184) with the broadest host ranges were chosen for further experiments. Transmission electron microscopy, whole-genome sequencing, comparative genome analyses, and time-kill analyses were performed. Daptomycin (DAP) plus the phage cocktail (113 [myophage] and 9184 [siphopage]) showed bactericidal activity in most regimens, while DAP addition prevented phage 9184 resistance against daptomycin-nonsusceptible E. faecium.


Subject(s)
Bacteriophages , Daptomycin , Enterococcus faecium , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Daptomycin/pharmacology , Enterococcus faecium/genetics , Microbial Sensitivity Tests
6.
Antimicrob Agents Chemother ; 65(11): e0012821, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34398668

ABSTRACT

Exebacase is a lysin (cell wall hydrolase) with direct lytic activity against Staphylococcus aureus including methicillin-resistant S. aureus (MRSA). Time-kill analysis experiments illustrated bactericidal activity of exebacase-daptomycin against MRSA strains MW2 and 494. Furthermore, exebacase in addition to daptomycin (10, 6, and 4 mg/kg/day) in a two-compartment ex vivo pharmacokinetic/pharmacodynamic simulated endocardial vegetation model with humanized doses resulted in reductions of 6.01, 4.99, and 2.81 log10 CFU/g (from initial inoculum) against MRSA strain MW2.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Daptomycin/pharmacology , Endopeptidases , Microbial Sensitivity Tests
7.
Antimicrob Agents Chemother ; 65(9): e0264620, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34125590

ABSTRACT

Cefiderocol (CFDC), a novel siderophore cephalosporin, demonstrates strong activity against multidrug-resistant (MDR) Acinetobacter baumannii. Limited studies have evaluated CFDC alone and in combination with other Gram-negative antibiotics against MDR A. baumannii isolates. Susceptibility testing revealed lower CFDC MIC values (87% of MICs ≤ 4mg/liter) than the comparator Gram-negative agents. Six isolates, with elevated CFDC MICs (16 to 32 mg/liter) were selected for further experiments. Time-kill analyses presented with synergistic activity and beta-lactamase inhibitors increased CFDC susceptibility in each of the isolates.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Cefiderocol
8.
Article in English | MEDLINE | ID: mdl-33077648

ABSTRACT

This study aimed to test the efficacy of bacteriophage-antibiotic combinations (BACs) in vitro in 24-h time-kill settings and in ex vivo simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic models for 96 h. BACs prevented the development of bacteriophage resistance, while some bacteriophage resistance emerged in bacteriophage-alone treatments. In addition, BACs resulted in an enhancement of bacterial eradication in SEV models. Our findings support the potential activity of BAC therapy for combating serious methicillin-resistant Staphylococcus aureus (MRSA) infections.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy
9.
Antibiotics (Basel) ; 9(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066415

ABSTRACT

The most efficacious antimicrobial therapy to aid in the successful elimination of resistant S. aureus infections is unknown. In this study, we evaluated varying phenotypes of S. aureus against dalbavancin (DAL), vancomycin (VAN), and daptomycin (DAP) alone and in combination with cefazolin (CFZ). The objective of this study was to observe whether there was a therapeutic improvement in adding a beta-lactam to a glycopeptide, lipopeptide, or a lipoglycopeptide. We completed a series of in vitro tests including minimum inhibitory concentration testing (MIC) of the antimicrobials in combination, time-kill analysis (TKA), and a 168 h (7-day) one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model on two daptomycin non-susceptible (DNS), vancomycin intermediate S. aureus strains (VISA), D712 and 6913. Results from our MIC testing demonstrated a minimum 2-fold and a maximum 32-fold reduction in MIC values for DAL, VAN, and DAP in combination with CFZ, in contrast to either agent used alone. The TKAs completed on four strains paralleled the enhanced activity demonstrated via the combination MICs. In the one-compartment PK/PD models, the combination of DAP plus CFZ or VAN plus CFZ resulted in a significant (p < 0.001) improvement in bactericidal activity and overall reduction in CFU/ml over the 7-day period. While the addition of CFZ to DAL improved time to bactericidal activity, DAL alone demonstrated equal and more sustained overall activity compared to all other treatments. The use of DAL alone, with or without CFZ and the combinations of VAN or DAP with CFZ appear to result in increased bactericidal activity against various recalcitrant S. aureus phenotypes.

10.
J Infect Dis ; 222(9): 1531-1539, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32514561

ABSTRACT

BACKGROUND: The combination of daptomycin (DAP) plus ampicillin (AMP), ertapenem (ERT), or ceftaroline has been demonstrated to be efficacious against a DAP-tolerant Enterococcus faecium strain (HOU503). However, the mechanism for the efficacy of these combinations against DAP-resistant (DAP-R) E. faecium strains is unknown. METHODS: We investigated the efficacy of DAP in combination with AMP, ERT, ceftaroline, ceftriaxone, or amoxicillin against DAP-R E. faecium R497 using established in vitro and in vivo models. We evaluated pbp expression, levels of penicillin-binding protein (PBP) 5 (PBP5) and ß-lactam binding affinity in HOU503 versus R497. RESULTS: DAP plus AMP was the only efficacious regimen against DAP-R R497 and prevented emergence of resistance. DAP at 8, 6, and 4 mg/kg in combination with AMP was efficacious but showed delayed killing compared with 10 mg/kg. PBP5 of HOU503 exhibited amino acid substitutions in the penicillin-binding domain relative to R497. No difference in pbp mRNA or PBP5 levels was detected between HOU503 and R497. labeling of PBPs with Bocillin FL, a fluorescent penicillin derivative, showed increased ß-lactam binding affinity of PBP5 of HOU503 compared with that of R497. CONCLUSIONS: Only DAP (10 mg/kg) plus AMP or amoxicillin was efficacious against a DAP-R E. faecium strain, and pbp5 alleles may be important contributors to efficacy of DAP plus ß-lactam therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Enterococcus faecium/drug effects , beta-Lactams/pharmacology , Ampicillin/administration & dosage , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Cephalosporins/administration & dosage , Cephalosporins/therapeutic use , Daptomycin/administration & dosage , Disease Models, Animal , Drug Resistance, Bacterial , Drug Therapy, Combination , Endocarditis, Bacterial/drug therapy , Enterococcus faecium/genetics , Ertapenem/administration & dosage , Ertapenem/pharmacology , Gram-Positive Bacterial Infections/drug therapy , Microbial Sensitivity Tests , Rats , Sequence Alignment , Transcriptome , beta-Lactams/administration & dosage , Ceftaroline
11.
J Antimicrob Chemother ; 75(10): 2894-2901, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32591820

ABSTRACT

BACKGROUND: Increasing application of vancomycin due to the high prevalence of MRSA infections has led to the emergence of vancomycin intermediate-resistant Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA). Consequently, the need for alternative therapies that target MRSA has become evident. OBJECTIVES: To evaluate the synergy between (lipo)glycopeptides (LGP/GPs) (vancomycin, teicoplanin, telavancin, dalbavancin and oritavancin) and ß-lactams (ceftaroline, cefepime, cefazolin and oxacillin) against MRSA, hVISA, VISA and daptomycin non-susceptible (DNS) phenotypes. METHODS: Twenty randomly selected clinical MRSA strains (i.e. 5 MRSA, 5 hVISA, 5 VISA and 5 DNS) were assessed versus LGP/GPs alone and LGP/GPs in combination with ß-lactams for MICs. Although verification of antibiotic potency against bacterial strains is assessed by the microbroth dilution (MBD) MIC method recommended by the CLSI, some antibiotics need modified assay conditions in order to demonstrate their optimal activity. RESULTS: Addition of ß-lactams reduced MIC values of LGP/GPs against all strains (up to 160-fold reduction). In general, LGPs (dalbavancin, oritavancin and telavancin) were more active (significant differences in MIC values, up to 8-fold) compared with vancomycin and teicoplanin. The majority of these combinations were bactericidal and superior to any single agent. CONCLUSIONS: This report has examined the susceptibility patterns of LGP/GPs and their combination with ß-lactams. Of interest, the impact of susceptibility tests (in terms of MIC plates and their surface area) on the synergistic activity in 24 h time-kill experiments was apparent for LGPs. Further clinical research is required to investigate synergy with LGP/GPs and ß-lactams against these Staphylococcus strains.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Glycopeptides/pharmacology , Humans , Microbial Sensitivity Tests , Vancomycin , beta-Lactams/pharmacology
12.
Article in English | MEDLINE | ID: mdl-32571816

ABSTRACT

Concerns regarding increased prevalence of daptomycin (DAP)-resistant strains necessitate novel therapies for Enterococcus faecium infections. Obligately lytic bacteriophages are viruses that target, infect, and kill bacterial cells. Limited studies have evaluated phage-antibiotic combinations against E. faecium After an initial screen of eight E. faecium strains, three strains with varying DAP/phage susceptibilities were selected for further experiments. Phage-to-strain specificity contributed to synergy with antibiotics by time-kill analyses and was associated with lower development of phage resistance.


Subject(s)
Anti-Bacterial Agents , Daptomycin , Enterococcus faecium , Phage Therapy , Anti-Bacterial Agents/pharmacology , Bacteriophages , Daptomycin/pharmacology , Gram-Positive Bacterial Infections/therapy , Humans , Microbial Sensitivity Tests
13.
Article in English | MEDLINE | ID: mdl-32393490

ABSTRACT

Comparative time-kill experiments with Staphylococcus aureus bacteriophage (phage) Sb-1 alone and phage-antibiotic combinations (PACs) against two methicillin-resistant S. aureus (MRSA) strains have shown synergy with both daptomycin-phage and vancomycin-phage combinations. PACs prevented development of phage resistance and demonstrated bactericidal activity for all triple combinations. In addition, the extracellular membrane vesicle (MV) formation and the potential impact of phage on MV suppression were examined. Our results demonstrate the potential of PAC for combating MRSA infections.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Humans , Methicillin Resistance , Microbial Sensitivity Tests , Phenotype , Staphylococcal Infections/drug therapy , Staphylococcus aureus
14.
Article in English | MEDLINE | ID: mdl-31182535

ABSTRACT

Multidrug-resistant (MDR) Gram-negative organisms are a major health concern due to lack of effective therapy. Emergence of resistance to newer agents like ceftazidime-avibactam (CZA) further magnifies the problem. In this context, combination therapy of CZA with other antimicrobials may have potential in treating these pathogens. Unfortunately, there are limited data regarding these combinations. Therefore, the objective of this study was to evaluate CZA in combination with amikacin (AMK), aztreonam (AZT), colistin (COL), fosfomycin (FOS), and meropenem (MEM) against 21 carbapenem-resistant Klebsiella pneumoniae and 21 MDR Pseudomonas aeruginosa strains. The potential for synergy was evaluated via MIC combination evaluation and time-kill assays. All strains were further characterized by whole-genome sequencing, quantitative real-time PCR, and SDS-PAGE analysis to determine potential mechanisms of resistance. Compared to CZA alone, we observed a 4-fold decrease in CZA MICs for a majority of K. pneumoniae strains and at least a 2-fold decrease for most P. aeruginosa isolates in the majority of combinations tested. In both P. aeruginosa and K. pneumoniae strains, CZA in combination with AMK or AZT was synergistic (≥2.15-log10 CFU/ml decrease). CZA-MEM was effective against P. aeruginosa and CZA-FOS was effective against K. pneumoniae Time-kill analysis also revealed that the synergy of CZA with MEM or AZT may be due to the previously reported restoration of MEM or AZT activity against these organisms. Our findings show that CZA in combination with these antibiotics has potential for therapeutic options in difficult to treat pathogens. Further evaluation of these combinations is warranted.


Subject(s)
Amikacin/pharmacology , Azabicyclo Compounds/pharmacology , Aztreonam/pharmacology , Ceftazidime/pharmacology , Colistin/pharmacology , Fosfomycin/pharmacology , Klebsiella pneumoniae/drug effects , Meropenem/pharmacology , Pseudomonas aeruginosa/drug effects , Drug Combinations , Drug Resistance, Multiple, Bacterial , Drug Synergism , Microbial Sensitivity Tests
15.
Article in English | MEDLINE | ID: mdl-30962347

ABSTRACT

The viridans group streptococci (VGS) are a heterogeneous group of organisms which are important components of the normal human oral flora. Among the VGS, the Streptococcus mitis/oralis subgroup is one of the most common causes of infective endocarditis (IE). Daptomycin (DAP) is a potential alternative therapeutic option for invasive S. mitis infections, given high rates of ß-lactam resistance and vancomycin tolerance in such strains. However, the ability of these strains to rapidly evolve high-level and durable DAP resistance (DAP-R) is problematic. Recent data suggest that combination DAP-ß-lactam therapy circumvents this issue. Human-simulated dose-escalating DAP-alone dose regimens (6, 8, 10, or 12 mg/kg/day times 4 days) versus DAP (6 mg/kg/day) plus ceftriaxone (CRO) (2 g once daily times 4 days or 0.5 g, single dose) were assessed against two prototypical DAP-susceptible (DAP-S) S. mitis/oralis strains (SF100 and 351), as measured by a pharmacokinetic/pharmacodynamic (PK/PD) model of simulated endocardial vegetations (SEVs). No DAP-alone regimen was effective, with regrowth of high-level DAP-R isolates observed for both strains over 96-h exposures. Combinations of DAP-CRO with either single- or multidose regimens yielded significant reductions in log10 CFU/g amounts within SEVs for both strains (∼6 log10 CFU/g) within 24 h. In addition, no DAP-R strains were detected in either DAP-CRO combination regimens over the 96-h exposure. In contrast to prior in vitro studies, no perturbations in two key cardiolipin biosynthetic genes (cdsA and pgsA) were identified in DAP-R SEV isolates emerging from strain 351, despite defective phospholipid production. The combination of DAP-CRO warrants further investigation for treatment of IE due to S. mitis/oralis.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Ceftriaxone/administration & dosage , Daptomycin/administration & dosage , Endocarditis, Bacterial/drug therapy , Streptococcus mitis/drug effects , Streptococcus oralis/drug effects , Drug Resistance, Bacterial/drug effects , Drug Therapy, Combination/methods , Endocarditis/drug therapy , Endocarditis/microbiology , Endocarditis, Bacterial/microbiology , Humans , Microbial Sensitivity Tests/methods , Streptococcus mitis/metabolism , Streptococcus oralis/metabolism , Vancomycin/administration & dosage , beta-Lactams/metabolism
16.
Article in English | MEDLINE | ID: mdl-30670436

ABSTRACT

Glycopeptides such as vancomycin have been used as the first-line therapy against MRSA infections for over half a century. Reduced susceptibility and emergence of resistance to first-generation glycopeptides has led to development of second-generation lipoglycopeptide derivatives such as dalbavancin which hold broader ranges of activity and enhanced pharmacokinetic properties. We evaluated the MIC values for a total of 100 isolates, including 25 methicillin-resistant Staphylococcus aureus (MRSA), 25 heterogeneus vancomycin-intermediate S. aureus, 25 daptomycin nonsusceptible (DNS), and 25 vancomycin-intermediate S. aureus strains against dalbavancin, ceftaroline, and vancomycin alone and in combination. Dalbavancin was highly active against hVISA, DNS, and MRSA strains, achieving 96 to 100% susceptibility and 72% susceptibility against VISA strains. The combination of dalbavancin plus ceftaroline reduced dalbavancin MICs 62.5-fold and demonstrated enhanced killing against all four phenotypes in pharmacokinetic/pharmacodynamic models. Four strains of the aforementioned phenotypes were randomly chosen for pharmacodynamic/pharmacokinetic simulation models. Of interest, while both dalbavancin and vancomycin in combination with ceftaroline demonstrated significant improvement in glycopeptide fAUC/MIC values against these four phenotypes, the dalbavancin-ceftaroline combinations exhibited a 44- to 11,270-fold higher fAUC/MIC value in comparison to vancomycin-ceftaroline combinations. In addition, the time to detection limit was reduced for this combination (24 to 32 h) versus the vancomycin-ceftaroline combination (24 to 72h). To our knowledge, this is the first comprehensive study of dalbavancin and vancomycin combinations with ceftaroline. These data provide a novel approach for combating recalcitrant MRSA infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Staphylococcus aureus/drug effects , Teicoplanin/analogs & derivatives , Anti-Bacterial Agents/pharmacokinetics , Daptomycin/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Synergism , Drug Therapy, Combination , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Models, Biological , Staphylococcus aureus/isolation & purification , Teicoplanin/pharmacokinetics , Teicoplanin/pharmacology , Vancomycin/pharmacology , Ceftaroline
17.
J Antimicrob Chemother ; 74(1): 82-86, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30260409

ABSTRACT

Background: Emergence of reduced susceptibility to vancomycin warrants the development of new antimicrobial agents for the treatment of MRSA. We evaluated the activity of dalbavancin, a novel lipoglycopeptide antibiotic, both alone and combined with ß-lactams, in combination MIC testing and time-kill assays against resistant phenotypes of Staphylococcus aureus. Methods: S. aureus isolates included 50 organisms with varying susceptibility patterns. Dalbavancin was tested alone and in combination with five ß-lactams: cefazolin, cefepime, ceftaroline, ertapenem and oxacillin. MIC values of the antibiotics were determined for all isolates. After initial MIC testing, dalbavancin MICs were determined in the presence of 0.5 × MIC of each ß-lactam to determine the effect of each ß-lactam on dalbavancin MIC. Time-kill assays were performed with dalbavancin and ß-lactams tested at 0.5 × MIC for randomly selected organisms representing each MRSA phenotype. Time-kill curves were generated by plotting mean colony counts (log10 cfu/mL) versus time. Results: Dalbavancin MIC50 was 0.0313 mg/L and MIC90 was 0.0625 mg/L. Dalbavancin MICs decreased by zero to greater than five 2-fold dilutions in combination with each ß-lactam. In time-kill assays, dalbavancin was synergistic with cefazolin, cefepime and ertapenem against all strains and the combination of dalbavancin and ceftaroline was synergistic against all but one. The combination of dalbavancin and oxacillin was synergistic against 5/8 strains. Conclusions: Dalbavancin was active against all MRSA strains tested, including heteroresistant vancomycin-intermediate S. aureus, vancomycin-intermediate S. aureus, daptomycin-non-susceptible and linezolid-resistant isolates. The synergy demonstrated against these organisms supports the use of dalbavancin in combination with ß-lactams against resistant phenotypes of S. aureus. Further evaluation is warranted.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Staphylococcus aureus/drug effects , Teicoplanin/analogs & derivatives , beta-Lactams/pharmacology , Drug Interactions , Microbial Sensitivity Tests , Phenotype , Teicoplanin/pharmacology
18.
Materials (Basel) ; 11(7)2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30036944

ABSTRACT

Vancomycin is the treatment of choice for infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Clinically, combinations of vancomycin (VAN) and beta-lactams have been shown to improve patient outcomes compared to VAN alone for the treatment of MRSA bloodstream infections. However, VAN is known to cause nephrotoxicity, which could be ameliorated using biocompatible lipid drug delivery systems or liposomes. Previous attempts have been made for encapsulation of VAN in liposomes; however, drug loading has been poor, mainly because of the high aqueous solubility of VAN. In this study, we report a robust method to achieve high loading of VAN and cefazolin (CFZ) in unilamellar liposomes. Liposomes of sizes between 170⁻198 nm were prepared by modified reverse phase evaporation method and achieved high loading of 40% and 26% (weight/weight) for VAN and CFZ, respectively. Liposomal VAN reduced minimum inhibitory concentration (MIC) values 2-fold in comparison to commercial VAN. The combination of liposomal VAN (LVAN) and liposomal CFZ (LCFZ) demonstrated a 7.9-fold reduction compared to LVAN alone. Rhodamine dye-loaded liposomes demonstrated superior cellular uptake in macrophage-like RAW 264.7 cells. Fluorescent images of LVAN-encapsulating near-infrared (NIR) dye, S0456 (LVAN-S0456) clearly indicated that LVAN-S0456 had reduced renal excretion with very low fluorescent intensity in the kidneys. It is anticipated that the long circulation and reduced kidney clearance of LVAN-S0456 compared to VAN-S0456 injected in mice can lead to enhanced efficacy against MRSA infections with reduced nephrotoxicity. Overall, our developed formulations of VAN when administered alone or in combination with CFZ, provide a rational approach for combating MRSA infections.

19.
Article in English | MEDLINE | ID: mdl-29760141

ABSTRACT

Enterococcus faecium isolates that harbor LiaFSR substitutions but are phenotypically susceptible to daptomycin (DAP) by current breakpoints are problematic, since predisposition to resistance may lead to therapeutic failure. Using a simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic (PK/PD) model, we investigated DAP regimens (6, 8, and 10 mg/kg of body weight/day) as monotherapy and in combination with ampicillin (AMP), ceftaroline (CPT), or ertapenem (ERT) against E. faecium HOU503, a DAP-susceptible strain that harbors common LiaS and LiaR substitutions found in clinical isolates (T120S and W73C, respectively). Of interest, the efficacy of DAP monotherapy, at any dose regimen, was dependent on the size of the inoculum. At an inoculum of ∼109 CFU/g, DAP doses of 6 to 8 mg/kg/day were not effective and led to significant regrowth with emergence of resistant derivatives. In contrast, at an inoculum of ∼107 CFU/g, marked reductions in bacterial counts were observed with DAP at 6 mg/kg/day, with no resistance. The inoculum effect was confirmed in a rat model using humanized DAP exposures. Combinations of DAP with AMP, CPT, or ERT demonstrated enhanced eradication and reduced potential for resistance, allowing de-escalation of the DAP dose. Persistence of the LiaRS substitutions was identified in DAP-resistant isolates recovered from the SEV model and in DAP-resistant derivatives of an initially DAP-susceptible clinical isolate of E. faecium (HOU668) harboring LiaSR substitutions that was recovered from a patient with a recurrent bloodstream infection. Our results provide novel data for the use of DAP monotherapy and combinations for recalcitrant E. faecium infections and pave the way for testing these approaches in humans.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Daptomycin/pharmacology , Endocarditis/drug therapy , Enterococcus faecium/drug effects , Gram-Positive Bacterial Infections/drug therapy , beta-Lactams/pharmacology , Animals , Anti-Bacterial Agents/pharmacokinetics , Aortic Valve/drug effects , Aortic Valve/microbiology , Aortic Valve/pathology , Area Under Curve , Bacterial Load , Daptomycin/pharmacokinetics , Disease Models, Animal , Drug Administration Schedule , Drug Combinations , Drug Resistance, Bacterial/genetics , Drug Synergism , Endocarditis/microbiology , Endocarditis/pathology , Endocardium/drug effects , Endocardium/microbiology , Endocardium/pathology , Enterococcus faecium/genetics , Enterococcus faecium/growth & development , Enterococcus faecium/isolation & purification , Gene Expression , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/pathology , Humans , Male , Microbial Sensitivity Tests , Rats , Rats, Sprague-Dawley , Whole Genome Sequencing , beta-Lactams/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...