Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(21): 17528-17537, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664586

ABSTRACT

Magnesium-based nanoparticles have shown promise in regenerative therapies in orthopedics and the cardiovascular system. Here, we set out to assess the influence of differently functionalized Mg nanoparticles on the cellular players of wound healing, the first step in the process of tissue regeneration. First, we thoroughly addressed the physicochemical characteristics of magnesium hydroxide nanoparticles, which exhibited low colloidal stability and strong aggregation in cell culture media. To address this matter, magnesium hydroxide nanoparticles underwent surface functionalization by 3-aminopropyltriethoxysilane (APTES), resulting in excellent dispersible properties in ethanol and improved colloidal stability in physiological media. The latter was determined as a concentration- and time-dependent phenomenon. There were no significant effects on THP-1 macrophage viability up to 1.500 µg/mL APTES-coated magnesium hydroxide nanoparticles. Accordingly, increased media pH and Mg2+ concentration, the nanoparticles dissociation products, had no adverse effects on their viability and morphology. HDF, ASCs, and PK84 exhibited the highest, and HUVECs, HPMECs, and THP-1 cells the lowest resistance toward nanoparticle toxic effects. In conclusion, the indicated high magnesium hydroxide nanoparticles biocompatibility suggests them a potential drug delivery vehicle for treating diseases like fibrosis or cancer. If delivered in a targeted manner, cytotoxic nanoparticles could be considered a potential localized and specific prevention strategy for treating highly prevalent diseases like fibrosis or cancer. Looking toward the possible clinical applications, accurate interpretation of in vitro cellular responses is the keystone for the relevant prediction of subsequent in vivo biological effects.

2.
Cell Death Dis ; 13(6): 561, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732639

ABSTRACT

Tubular aggregates (TA) are honeycomb-like arrays of sarcoplasmic-reticulum (SR) tubules affecting aged glycolytic fibers of male individuals and inducing severe sarcomere disorganization and muscular pain. TA develop in skeletal muscle from Tubular Aggregate Myopathy (TAM) patients as well as in other disorders including endocrine syndromes, diabetes, and ageing, being their primary cause unknown. Nowadays, there is no cure for TA. Intriguingly, both hypoxia and calcium dyshomeostasis prompt TA formation, pointing to a possible role for mitochondria in their setting. However, a functional link between mitochondrial dysfunctions and TA remains unknown. Herein, we investigate the alteration in muscle-proteome of TAM patients, the molecular mechanism of TA onset and a potential therapy in a preclinical mouse model of the disease. We show that in vivo chronic inhibition of the mitochondrial ATP synthase in muscle causes TA. Upon long-term restrained oxidative phosphorylation (OXPHOS), oxidative soleus experiments a metabolic and structural switch towards glycolytic fibers, increases mitochondrial fission, and activates mitophagy to recycle damaged mitochondria. TA result from the overresponse of the fission controller DRP1, that upregulates the Store-Operate-Calcium-Entry and increases the mitochondria-SR interaction in a futile attempt to buffer calcium overloads upon prolonged OXPHOS inhibition. Accordingly, hypoxic muscles cultured ex vivo show an increase in mitochondria/SR contact sites and autophagic/mitophagic zones, where TA clusters grow around defective mitochondria. Moreover, hypoxia triggered a stronger TA formation upon ATP synthase inhibition, and this effect was reduced by the DRP1 inhibitor mDIVI. Remarkably, the muscle proteome of TAM patients displays similar alterations in mitochondrial dynamics and in ATP synthase contents. In vivo edaravone treatment in mice with restrained OXPHOS restored a healthy phenotype by prompting mitogenesis and mitochondrial fusion. Altogether, our data provide a functional link between the ATP synthase/DRP1 axis and the setting of TA, and repurpose edaravone as a possible treatment for TA-associated disorders.


Subject(s)
Mitochondrial Proton-Translocating ATPases , Sarcoplasmic Reticulum , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Edaravone/metabolism , Humans , Hypoxia/metabolism , Male , Mice , Mitochondrial Dynamics/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , Muscle, Skeletal/metabolism , Proteome/metabolism , Sarcoplasmic Reticulum/metabolism
3.
Int Immunopharmacol ; 90: 107237, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310662

ABSTRACT

The risk for adverse immune-mediated reactions, associated with the administration of certain immunotherapeutic agents, should be mitigated early. Infusion reactions to monoclonal antibodies and other biopharmaceuticals, known as cytokine release syndrome, can arise from the release of cytokines via the drug target cell, as well as the recruitment of immune effector cells. While several in vitro cytokine release assays have been proposed up to date, many of them lack important blood components, required for this response to occur. The blood endothelial cell chamber model is an in vitro assay, composed of freshly drawn human whole blood and cultured human primary endothelial cells. Herein, its potential to study the compatibility of immunotherapeutics with the human immune system was studied by evaluating three commercially available monoclonal antibodies and bacterial endotoxin lipopolysaccharide. We demonstrate that the anti-CD28 antibody TGN1412 displayed an adaptive cytokine release profile and a distinct IL-2 response, accompanied with increased CD3+ cell recruitment. Alemtuzumab exhibited a clear cytokine response with a mixed adaptive/innate source (IFNγ, TNFα and IL-6). Its immunosuppressive nature is observed in depleted CD3+ cells. Cetuximab, associated with low infusion reactions, showed a very low or absent stimulatory effect on proinflammatory cytokines. In contrast, bacterial endotoxin demonstrated a clear innate cytokine response, defined by TNFα, IL-6 and IL-1ß release, accompanied with a strong recruitment of CD14+CD16+ cells. Therefore, the blood endothelial cell chamber model is presented as a valuable in vitro tool to investigate therapeutic monoclonal antibodies with respect to cytokine release and vascular immune cell recruitment.


Subject(s)
Drug Development/instrumentation , Epithelial Cells/drug effects , Epithelial Cells/immunology , Immunotherapy/methods , Alemtuzumab/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Cells, Cultured , Cetuximab/pharmacology , Cytokines/blood , Humans , Immunity, Cellular/drug effects , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL
...