Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Biomembr ; 1866(7): 184349, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815687

ABSTRACT

Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.

2.
J Vis Exp ; (197)2023 07 21.
Article in English | MEDLINE | ID: mdl-37677009

ABSTRACT

The delivery of biomolecules and impermeable dyes to intact plants is a major challenge. Nanomaterials are up-and-coming tools for the delivery of DNA to plants. As exciting as these new tools are, they have yet to be widely applied. Nanomaterials fabricated on rigid substrate (backing) are particularly difficult to successfully apply to curved plant structures. This study describes the process for microfabricating vertically aligned carbon nanofiber arrays and transferring them from a rigid to a flexible substrate. We detail and demonstrate how these fibers (on either rigid or flexible substrates) can be used for transient transformation or dye (e.g., fluorescein) delivery to plants. We show how VACNFs can be transferred from rigid silicon substrate to a flexible SU-8 epoxy substrate to form flexible VACNF arrays. To overcome the hydrophobic nature of SU-8, fibers in the flexible film were coated with a thin silicon oxide layer (2-3 nm). To use these fibers for delivery to curved plant organs, we deposit a 1 µL droplet of dye or DNA solution on the fiber side of VACNF films, wait 10 min, place the films on the plant organ and employ a swab with a rolling motion to drive fibers into plant cells. With this method, we have achieved dye and DNA delivery in plant organs with curved surfaces.


Subject(s)
Nanofibers , Nanostructures , Motion Pictures , Carbon , Coloring Agents
3.
Front Plant Sci ; 13: 1051340, 2022.
Article in English | MEDLINE | ID: mdl-36507425

ABSTRACT

Transient transformation in plants is a useful process for evaluating gene function. However, there is a scarcity of minimally perturbing methods for gene delivery that can be used on multiple organs, plant species, and non-excised tissues. We pioneered and demonstrated the use of vertically aligned carbon nanofiber (VACNF) arrays to efficiently perform transient transformation of different tissues with DNA constructs in multiple plant species. The VACNFs permeabilize plant tissue transiently to allow molecules into cells without causing a detectable stress response. We successfully delivered DNA into leaves, roots and fruit of five plant species (Arabidopsis, poplar, lettuce, Nicotiana benthamiana, and tomato) and confirmed accumulation of the encoded fluorescent proteins by confocal microscopy. Using this system, it is possible to transiently transform plant cells with both small and large plasmids. The method is successful for species recalcitrant to Agrobacterium-mediated transformation. VACNFs provide simple, reliable means of DNA delivery into a variety of plant organs and species.

4.
Proteins ; 89(3): 336-347, 2021 03.
Article in English | MEDLINE | ID: mdl-33118210

ABSTRACT

Predicting the range of substrates accepted by an enzyme from its amino acid sequence is challenging. Although sequence- and structure-based annotation approaches are often accurate for predicting broad categories of substrate specificity, they generally cannot predict which specific molecules will be accepted as substrates for a given enzyme, particularly within a class of closely related molecules. Combining targeted experimental activity data with structural modeling, ligand docking, and physicochemical properties of proteins and ligands with various machine learning models provides complementary information that can lead to accurate predictions of substrate scope for related enzymes. Here we describe such an approach that can predict the substrate scope of bacterial nitrilases, which catalyze the hydrolysis of nitrile compounds to the corresponding carboxylic acids and ammonia. Each of the four machine learning models (logistic regression, random forest, gradient-boosted decision trees, and support vector machines) performed similarly (average ROC = 0.9, average accuracy = ~82%) for predicting substrate scope for this dataset, although random forest offers some advantages. This approach is intended to be highly modular with respect to physicochemical property calculations and software used for structural modeling and docking.


Subject(s)
Aminohydrolases , Bacterial Proteins , Machine Learning , Molecular Docking Simulation/methods , Aminohydrolases/chemistry , Aminohydrolases/genetics , Aminohydrolases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Chemical Phenomena , Ligands , Nitriles/chemistry , Nitriles/metabolism , Protein Binding
5.
Proc Natl Acad Sci U S A ; 117(36): 21896-21905, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32843347

ABSTRACT

Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure-property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach-combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations-we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer's packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure-property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol's role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid-protein interactions.


Subject(s)
Cell Membrane/chemistry , Cholesterol/metabolism , Membrane Lipids/chemistry , Biomechanical Phenomena , Cell Membrane/metabolism , Cholesterol/chemistry , Magnetic Resonance Spectroscopy , Membrane Fluidity , Membrane Lipids/metabolism , Molecular Dynamics Simulation
6.
Front Microbiol ; 11: 914, 2020.
Article in English | MEDLINE | ID: mdl-32499768

ABSTRACT

Developing cultivation methods that yield chemically and isotopically defined fatty acid (FA) compositions within bacterial cytoplasmic membranes establishes an in vivo experimental platform to study membrane biophysics and cell membrane regulation using novel approaches. Yet before fully realizing the potential of this method, it is prudent to understand the systemic changes in cells induced by the labeling procedure itself. In this work, analysis of cellular membrane compositions was paired with proteomics to assess how the proteome changes in response to the directed incorporation of exogenous FAs into the membrane of Bacillus subtilis. Key findings from this analysis include an alteration in lipid headgroup distribution, with an increase in phosphatidylglycerol lipids and decrease in phosphatidylethanolamine lipids, possibly providing a fluidizing effect on the cell membrane in response to the induced change in membrane composition. Changes in the abundance of enzymes involved in FA biosynthesis and degradation are observed; along with changes in abundance of cell wall enzymes and isoprenoid lipid production. The observed changes may influence membrane organization, and indeed the well-known lipid raft-associated protein flotillin was found to be substantially down-regulated in the labeled cells - as was the actin-like protein MreB. Taken as a whole, this study provides a greater depth of understanding for this important cell membrane experimental platform and presents a number of new connections to be explored in regard to modulating cell membrane FA composition and its effects on lipid headgroup and raft/cytoskeletal associated proteins.

7.
ACS Chem Biol ; 14(12): 2867-2875, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31693336

ABSTRACT

Elucidating the interaction networks associated with secondary metabolite production in microorganisms is an ongoing challenge made all the more daunting by the rate at which DNA sequencing technology reveals new genes and potential pathways. Developing the culturing methods, expression conditions, and genetic systems needed for validating pathways in newly discovered microorganisms is often not possible. Therefore, new tools and techniques are needed for defining complex metabolic pathways. Here, we describe an in vitro computationally assisted pathway description approach that employs bioinformatic searches of genome databases, protein structural modeling, and protein-ligand-docking simulations to predict the gene products most likely to be involved in a particular secondary metabolite production pathway. This information is then used to direct in vitro reconstructions of the pathway and subsequent confirmation of pathway activity using crude enzyme preparations. As a test system, we elucidated the pathway for biosynthesis of indole-3-acetic acid (IAA) in the plant-associated microbe Pantoea sp. YR343. This organism is capable of metabolizing tryptophan into the plant phytohormone IAA. BLAST analyses identified a likely three-step pathway involving an amino transferase, an indole pyruvate decarboxylase, and a dehydrogenase. However, multiple candidate enzymes were identified at each step, resulting in a large number of potential pathway reconstructions (32 different enzyme combinations). Our approach shows the effectiveness of crude extracts to rapidly elucidate enzymes leading to functional pathways. Results are compared to affinity purified enzymes for select combinations and found to yield similar relative activities. Further, in vitro testing of the pathway reconstructions revealed the "underground" nature of IAA metabolism in Pantoea sp. YR343 and the various mechanisms used to produce IAA. Importantly, our experiments illustrate the scalable integration of computational tools and cell-free enzymatic reactions to identify and validate metabolic pathways in a broadly applicable manner.


Subject(s)
Computational Biology , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Biosynthetic Pathways , Ligands , Molecular Docking Simulation , Pantoea/metabolism , Reproducibility of Results
8.
Sci Rep ; 9(1): 10272, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31312009

ABSTRACT

Spatial and temporal profiling of metabolites within and between living systems is vital to understanding how chemical signaling shapes the composition and function of these complex systems. Measurement of metabolites is challenging because they are often not amenable to extrinsic tags, are diverse in nature, and are present with a broad range of concentrations. Moreover, direct imaging by chemically informative tools can significantly compromise viability of the system of interest or lack adequate resolution. Here, we present a nano-enabled and label-free imaging technology using a microfluidic sampling network to track production and distribution of chemical information in the microenvironment of a living organism. We describe the integration of a polyester track-etched (PETE) nanofluidic interface to physically confine the biological sample within the model environment, while allowing fluidic access via an underlying microfluidic network. The nanoporous interface enables sampling of the microenvironment above in a time-dependent and spatially-resolved manner. For demonstration, the diffusional flux through the PETE membrane was characterized to understand membrane performance, and exometabolites from a growing plant root were successfully profiled in a space- and time-resolved manner. This method and device provide a frame-by-frame description of the chemical environment that maps to the physical and biological characteristics of the sample.

9.
Nat Protoc ; 13(9): 2086-2101, 2018 09.
Article in English | MEDLINE | ID: mdl-30190552

ABSTRACT

Freely suspended liposomes are widely used as model membranes for studying lipid-lipid and protein-lipid interactions. Liposomes prepared by conventional methods have chemically identical bilayer leaflets. By contrast, living cells actively maintain different lipid compositions in the two leaflets of the plasma membrane, resulting in asymmetric membrane properties that are critical for normal cell function. Here, we present a protocol for the preparation of unilamellar asymmetric phospholipid vesicles that better mimic biological membranes. Asymmetry is generated by methyl-ß-cyclodextrin-catalyzed exchange of the outer leaflet lipids between vesicle pools of differing lipid composition. Lipid destined for the outer leaflet of the asymmetric vesicles is provided by heavy-donor multilamellar vesicles containing a dense sucrose core. Donor lipid is exchanged into extruded unilamellar acceptor vesicles that lack the sucrose core, facilitating the post-exchange separation of the donor and acceptor pools by centrifugation because of differences in vesicle size and density. We present two complementary assays allowing quantification of each leaflet's lipid composition: the overall lipid composition is determined by gas chromatography-mass spectrometry, whereas the lipid distribution between the two leaflets is determined by NMR, using the lanthanide shift reagent Pr3+. The preparation protocol and the chromatographic assay can be applied to any type of phospholipid bilayer, whereas the NMR assay is specific to lipids with choline-containing headgroups, such as phosphatidylcholine and sphingomyelin. In ~12 h, the protocol can produce a large yield of asymmetric vesicles (up to 20 mg) suitable for a wide range of biophysical studies.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/physiology , Phospholipids/analysis , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/chemical synthesis , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Models, Biological
10.
Metab Eng Commun ; 6: 56-62, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29896448

ABSTRACT

Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.

11.
J Proteome Res ; 17(4): 1361-1374, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29464956

ABSTRACT

Indole-3-acetic acid (IAA) plays a central role in plant growth and development, and many plant-associated microbes produce IAA using tryptophan as the precursor. Using genomic analyses, we predicted that Pantoea sp. YR343, a microbe isolated from Populus deltoides, synthesizes IAA using the indole-3-pyruvate (IPA) pathway. To better understand IAA biosynthesis and the effects of IAA exposure on cell physiology, we characterized proteomes of Pantoea sp. YR343 grown in the presence of tryptophan or IAA. Exposure to IAA resulted in upregulation of proteins predicted to function in carbohydrate and amino acid transport and exopolysaccharide (EPS) biosynthesis. Metabolite profiles of wild-type cells showed the production of IPA, IAA, and tryptophol, consistent with an active IPA pathway. Finally, we constructed an Δ ipdC mutant that showed the elimination of tryptophol, consistent with a loss of IpdC activity, but was still able to produce IAA (20% of wild-type levels). Although we failed to detect intermediates from other known IAA biosynthetic pathways, this result suggests the possibility of an alternate pathway or the production of IAA by a nonenzymatic route in Pantoea sp. YR343. The Δ ipdC mutant was able to efficiently colonize poplar, suggesting that an active IPA pathway is not required for plant association.


Subject(s)
Indoleacetic Acids/pharmacology , Pantoea/chemistry , Plant Growth Regulators/pharmacology , Populus/chemistry , Biosynthetic Pathways , Plant Growth Regulators/biosynthesis , Plant Proteins/drug effects , Populus/microbiology , Proteome/drug effects
12.
Synth Biol (Oxf) ; 3(1): ysy006, 2018.
Article in English | MEDLINE | ID: mdl-32995514

ABSTRACT

Living systems possess a rich biochemistry that can be harnessed through metabolic engineering to produce valuable therapeutics, fuels and fine chemicals. In spite of the tools created for this purpose, many organisms tend to be recalcitrant to modification or difficult to optimize. Crude cellular extracts, made by lysis of cells, possess much of the same biochemical capability, but in an easier to manipulate context. Metabolic engineering in crude extracts, or cell-free metabolic engineering, can harness these capabilities to feed heterologous pathways for metabolite production and serve as a platform for pathway optimization. However, the inherent biochemical potential of a crude extract remains ill-defined, and consequently, the use of such extracts can result in inefficient processes and unintended side products. Herein, we show that changes in cell growth conditions lead to changes in the enzymatic activity of crude cell extracts and result in different abilities to produce the central biochemical precursor pyruvate when fed glucose. Proteomic analyses coupled with metabolite measurements uncover the diverse biochemical capabilities of these different crude extract preparations and provide a framework for how analytical measurements can be used to inform and improve crude extract performance. Such informed developments can allow enrichment of crude extracts with pathways that promote or deplete particular metabolic processes and aid in the metabolic engineering of defined products.

13.
Anal Chem ; 89(21): 11443-11451, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29039646

ABSTRACT

Cell-free protein synthesis (CFPS) has the potential to produce enzymes, therapeutic agents, and other proteins, while circumventing difficulties associated with in vivo heterologous expression. However, the contents of the cell-free extracts used to carry out synthesis are generally not characterized, which hampers progress toward enhancing yield or functional activity of the target protein. We explored the utility of mass spectrometry (MS)-based proteomics for characterizing the bacterial extracts used for transcribing and translating gene sequences into proteins as well as the products of CFPS reactions. Full proteome experiments identified over 1000 proteins per reaction. The complete set of proteins necessary for transcription and translation were found, demonstrating the ability to define potential metabolic capabilities of the extract. Further, MS-based techniques allowed characterization of the CFPS product and provided insight into the synthesis reaction and potential functional activity of the product. These capabilities were demonstrated using two different CFPS products, the commonly used standard green fluorescent protein (GFP, 27 kDa) and the polyketide synthase DEBS1 (394 kDa). For the large, multidomain DEBS1, substantial premature termination of protein translation was observed. Additionally, MS/MS analysis, as part of a conventional full proteomics workflow, identified post-translational modifications, including the chromophore in GFP, as well as the three phosphopantetheinylation sites in DEBS1. A hypothesis-driven approach focused on these three sites identified that all were correctly modified for DEBS1 expressed in vivo but with less complete coverage for protein expressed in CFPS reactions. These post-translational modifications are essential for functional activity, and the ability to identify them with mass spectrometry is valuable for judging the success of the CFPS reaction. Collectively, the use of MS-based proteomics will prove advantageous for advancing the application of CFPS and related techniques.


Subject(s)
Escherichia coli Proteins/biosynthesis , Proteomics , Escherichia coli/metabolism , Escherichia coli Proteins/isolation & purification , Escherichia coli Proteins/metabolism , Mass Spectrometry
14.
J Phys Chem Lett ; 8(17): 4214-4217, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28825491

ABSTRACT

Lipid extracts are an excellent choice of model biomembrane; however at present, there are no commercially available lipid extracts or computational models that mimic microbial membranes containing the branched-chain fatty acids found in many pathogenic and industrially relevant bacteria. We advance the extract of Bacillus subtilis as a standard model for these diverse systems, providing a detailed experimental description and equilibrated atomistic bilayer model included as Supporting Information to this Letter and at ( http://cmb.ornl.gov/members/cheng ). The development and validation of this model represents an advance that enables more realistic simulations and experiments on bacterial membranes and reconstituted bacterial membrane proteins.


Subject(s)
Bacillus subtilis , Cell Membrane/physiology , Membrane Proteins/chemistry , Models, Biological , Bacterial Proteins , Fatty Acids , Lipid Bilayers , Membrane Lipids
15.
Protein Sci ; 26(10): 2098-2104, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28707382

ABSTRACT

Bacteriophage T4 lysozyme (T4L) has been used as a paradigm for seminal biophysical studies on protein structure, dynamics, and stability. Approximately 700 mutants of this protein and their respective complexes have been characterized by X-ray crystallography; however, despite the high resolution diffraction limits attained in several studies, no hydrogen atoms were reported being visualized in the electron density maps. To address this, a 2.2 Å-resolution neutron data set was collected at 80 K from a crystal of perdeuterated T4L pseudo-wild type. We describe a near complete atomic structure of T4L, which includes the positions of 1737 hydrogen atoms determined by neutron crystallography. The cryogenic neutron model reveals explicit detail of the hydrogen bonding interactions in the protein, in addition to the protonation states of several important residues.


Subject(s)
Muramidase/chemistry , Cold Temperature , Hydrogen/chemistry , Models, Molecular , Neutron Diffraction , Protein Conformation , Water/chemistry
16.
PLoS Biol ; 15(5): e2002214, 2017 05.
Article in English | MEDLINE | ID: mdl-28542493

ABSTRACT

Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments-performed under biologically relevant conditions-answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.


Subject(s)
Bacillus subtilis/metabolism , Cell Membrane/metabolism , Fatty Acids/metabolism , Lipid Bilayers/metabolism , Membrane Microdomains/metabolism , Models, Biological , Algorithms , Bacillus subtilis/chemistry , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/drug effects , Cerulenin/pharmacology , Deuterium , Enoyl-CoA Hydratase/genetics , Enoyl-CoA Hydratase/metabolism , Fatty Acid Synthesis Inhibitors/pharmacology , Fatty Acids/chemistry , Gene Deletion , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Membrane Microdomains/drug effects , Microbial Viability/drug effects , Neutron Diffraction , Palmitic Acids/chemistry , Palmitic Acids/metabolism , Scattering, Small Angle , Stereoisomerism
17.
J Exp Bot ; 68(7): 1769-1783, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28521013

ABSTRACT

Diverse pathogen-derived molecules, such as bacterial flagellin and its conserved peptide flg22, are recognized in plants via plasma membrane receptors and induce both local and systemic immune responses. The fate of such ligands was unknown: whether and by what mechanism(s) they enter plant cells and whether they are transported to distal tissues. We used biologically active fluorophore and radiolabeled peptides to establish that flg22 moves to distal organs with the closest vascular connections. Remarkably, entry into the plant cell via endocytosis together with the FLS2 receptor is needed for delivery to vascular tissue and long-distance transport of flg22. This contrasts with known routes of long distance transport of other non-cell-permeant molecules in plants, which require membrane-localized transporters for entry to vascular tissue. Thus, a plasma membrane receptor acts as a transporter to enable access of its ligand to distal trafficking routes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flagellin/metabolism , Protein Kinases/metabolism , Protein Transport , Endocytosis , Ligands
18.
Soft Matter ; 12(47): 9417-9428, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27801465

ABSTRACT

Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of different lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. These results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.


Subject(s)
Cell Membrane/chemistry , Cholesterol/chemistry , Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Phosphatidylcholines/chemistry , Molecular Dynamics Simulation , Saccharomyces cerevisiae
19.
J Org Chem ; 81(20): 9957-9963, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27631666

ABSTRACT

Primary alcohols can be deoxygenated cleanly and in yields of 60-95% by reduction of derived diphenyl phosphate esters with lithium triethylborohydride in tetrahydrofuran at room temperature. Selective deoxygenation of a primary alcohol in the presence of a secondary alcohol was demonstrated. The two-step process can be performed in one pot, making it simple and convenient.

20.
Langmuir ; 32(20): 5195-200, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27128636

ABSTRACT

Cell membranes possess a complex three-dimensional architecture, including nonrandom lipid lateral organization within the plane of a bilayer leaflet, and compositional asymmetry between the two leaflets. As a result, delineating the membrane structure-function relationship has been a highly challenging task. Even in simplified model systems, the interactions between bilayer leaflets are poorly understood, due in part to the difficulty of preparing asymmetric model membranes that are free from the effects of residual organic solvent or osmotic stress. To address these problems, we have modified a technique for preparing asymmetric large unilamellar vesicles (aLUVs) via cyclodextrin-mediated lipid exchange in order to produce tensionless, solvent-free aLUVs suitable for a range of biophysical studies. Leaflet composition and structure were characterized using isotopic labeling strategies, which allowed us to avoid the use of bulky labels. NMR and gas chromatography provided precise quantification of the extent of lipid exchange and bilayer asymmetry, while small-angle neutron scattering (SANS) was used to resolve bilayer structural features with subnanometer resolution. Isotopically asymmetric POPC vesicles were found to have the same bilayer thickness and area per lipid as symmetric POPC vesicles, demonstrating that the modified exchange protocol preserves native bilayer structure. Partial exchange of DPPC into the outer leaflet of POPC vesicles produced chemically asymmetric vesicles with a gel/fluid phase-separated outer leaflet and a uniform, POPC-rich inner leaflet. SANS was able to separately resolve the thicknesses and areas per lipid of coexisting domains, revealing reduced lipid packing density of the outer leaflet DPPC-rich phase compared to typical gel phases. Our finding that a disordered inner leaflet can partially fluidize ordered outer leaflet domains indicates some degree of interleaflet coupling, and invites speculation on a role for bilayer asymmetry in modulating membrane lateral organization.


Subject(s)
Unilamellar Liposomes/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Phosphatidylcholines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL