Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Physiol ; 601(11): 2165-2188, 2023 06.
Article in English | MEDLINE | ID: mdl-36814134

ABSTRACT

Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.


Subject(s)
Kynurenine , Tryptophan , Young Adult , Humans , Aged , Kynurenine/metabolism , Tryptophan/metabolism , Kynurenic Acid , NAD/metabolism , Muscle, Skeletal/physiology , Exercise/physiology
2.
Am J Physiol Endocrinol Metab ; 322(3): E260-E277, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35068187

ABSTRACT

Age-related declines in cardiorespiratory fitness and physical function are mitigated by regular endurance exercise in older adults. This may be due, in part, to changes in the transcriptional program of skeletal muscle following repeated bouts of exercise. However, the impact of chronic exercise training on the transcriptional response to an acute bout of endurance exercise has not been clearly determined. Here, we characterized baseline differences in muscle transcriptome and exercise-induced response in older adults who were active/endurance trained or sedentary. RNA-sequencing was performed on vastus lateralis biopsy specimens obtained before, immediately after, and 3 h following a bout of endurance exercise (40 min of cycling at 60%-70% of heart rate reserve). Using a recently developed bioinformatics approach, we found that transcript signatures related to type I myofibers, mitochondria, and endothelial cells were higher in active/endurance-trained adults and were associated with key phenotypic features including V̇o2peak, ATPmax, and muscle fiber proportion. Immune cell signatures were elevated in the sedentary group and linked to visceral and intermuscular adipose tissue mass. Following acute exercise, we observed distinct temporal transcriptional signatures that were largely similar among groups. Enrichment analysis revealed catabolic processes were uniquely enriched in the sedentary group at the 3-h postexercise timepoint. In summary, this study revealed key transcriptional signatures that distinguished active and sedentary adults, which were associated with difference in oxidative capacity and depot-specific adiposity. The acute response signatures were consistent with beneficial effects of endurance exercise to improve muscle health in older adults irrespective of exercise history and adiposity.NEW & NOTEWORTHY Muscle transcript signatures associated with oxidative capacity and immune cells underlie important phenotypic and clinical characteristics of older adults who are endurance trained or sedentary. Despite divergent phenotypes, the temporal transcriptional signatures in response to an acute bout of endurance exercise were largely similar among groups. These data provide new insight into the transcriptional programs of aging muscle and the beneficial effects of endurance exercise to promote healthy aging in older adults.


Subject(s)
Physical Endurance , Transcriptome , Aged , Endothelial Cells , Exercise/physiology , Humans , Muscle, Skeletal/metabolism , Physical Endurance/physiology
3.
J Gerontol A Biol Sci Med Sci ; 77(5): 1088-1097, 2022 05 05.
Article in English | MEDLINE | ID: mdl-34406407

ABSTRACT

BACKGROUND: Aging-related disease risk is exacerbated by obesity and physical inactivity. It is unclear how weight loss and increased activity improve risk in older adults. We aimed to determine the effects of diet-induced weight loss with and without exercise on insulin sensitivity, VO2peak, body composition, and physical function in older obese adults. METHODS: Physically inactive older (68.6 ± 4.5 years) obese (body mass index 37.4 ± 4.9 kg/m2) adults were randomized to health education control (HEC; n = 25); diet-induced weight loss (WL; n = 31); or weight loss and exercise (WLEX; n = 28) for 6 months. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, body composition by dual-energy X-ray absorptiometry and MRI, strength by isokinetic dynamometry, and VO2peak by graded exercise test. RESULTS: WLEX improved (p < .05) peripheral insulin sensitivity (+75 ± 103%) versus HEC (+12 ± 67%); WL (+36 ± 47%) versus HEC did not reach statistical significance. WLEX increased VO2peak (+7 ± 12%) versus WL (-2 ± 24%) and prevented reductions in strength and lean mass induced by WL (p < .05). WLEX decreased abdominal adipose tissue (-16 ± 9%) versus HEC (-3 ± 8%) and intermuscular adipose tissue (-15 ± 13%) versus both HEC (+9 ± 15%) and WL (+2 ± 11%; p < .01). CONCLUSIONS: Exercise with weight loss improved insulin sensitivity and VO2peak, decreased ectopic fat, and preserved lean mass and strength. Weight loss alone decreased lean mass and strength. Older adults intending to lose weight should perform regular exercise to promote cardiometabolic and functional benefits, which may not occur with calorie restriction-induced weight loss alone.


Subject(s)
Cardiorespiratory Fitness , Insulin Resistance , Aged , Body Composition/physiology , Exercise/physiology , Humans , Insulin Resistance/physiology , Muscle Strength , Obesity/therapy , Weight Loss/physiology
4.
Article in English | MEDLINE | ID: mdl-33013705

ABSTRACT

Weight loss induced by decreased energy intake (diet) or exercise generally has favorable effects on insulin sensitivity and cardiometabolic risk. The variation in these responses to diet-induced weight loss with or without exercise, particularly in older obese adults, is less clear. The objectives of our study were to (1) examine the effect of weight loss with or without exercise on the variability of responses in insulin sensitivity and cardiometabolic risk factors and (2) to explore whether baseline phenotypic characteristics are associated with response. Sedentary older obese (BMI 36.3 ± 5.0 kg/m2) adults (68.6 ± 4.7 years) were randomized to one of 3 groups: health education control (HED); diet-induced weight loss (WL); or weight loss and exercise (WL + EX) for 6 months. Composite Z-scores were calculated for changes in insulin sensitivity (C_IS: rate of glucose disposal/insulin at steady state during hyperinsulinemic euglycemic clamp, HOMA-IR, and HbA1C) and cardiometabolic risk (C_CMR: waist circumference, triglycerides, and fasting glucose). Baseline measures included body composition (MRI), cardiorespiratory fitness, in vivo mitochondrial function (ATPmax; P-MRS), and muscle fiber type. WL + EX groups had a greater proportion of High Responders in both C_IS and C_CMR compared to HED and WL only (all p < 0.05). Pre-intervention measures of insulin (r = 0.60) and HOMA-IR (r = 0.56) were associated with change in insulin sensitivity (C_IS) in the WL group (p < 0.05). Pre-intervention measures of glucose (r = 0.55), triglycerides (r = 0.53), and VLDL (r = 0.53) were associated with change in cardiometabolic risk (C_CMR) in the WL group (p < 0.05), whereas triglycerides (r = 0.59) and VLDL (r = 0.59) were associated with C_CMR (all p < 0.05) in WL + EX. Thus, the addition of exercise to diet-induced weight loss increases the proportion of older obese adults who improve insulin sensitivity and cardiometabolic risk. Additionally, individuals with poorer metabolic status are more likely to experience greater improvements in cardiometabolic risk during weight loss with or without exercise.


Subject(s)
Exercise/physiology , Individuality , Insulin Resistance/physiology , Obesity/therapy , Weight Loss/physiology , Aged , Blood Glucose/metabolism , Body Composition/physiology , Body Mass Index , Cardiometabolic Risk Factors , Female , Glucose Clamp Technique , Health Education , Humans , Insulin/metabolism , Male , Middle Aged , Obesity/physiopathology , Sedentary Behavior , Treatment Outcome
5.
Aging Cell ; 19(6): e13135, 2020 06.
Article in English | MEDLINE | ID: mdl-32468656

ABSTRACT

The loss of skeletal muscle mass and function with age (sarcopenia) is a critical healthcare challenge for older adults. 31-phosphorus magnetic resonance spectroscopy (31 P-MRS) is a powerful tool used to evaluate phosphorus metabolite levels in muscle. Here, we sought to determine which phosphorus metabolites were linked with reduced muscle mass and function in older adults. This investigation was conducted across two separate studies. Resting phosphorus metabolites in skeletal muscle were examined by 31 P-MRS. In the first study, fifty-five older adults with obesity were enrolled and we found that resting phosphocreatine (PCr) was positively associated with muscle volume and knee extensor peak power, while a phosphodiester peak (PDE2) was negatively related to these variables. In the second study, we examined well-phenotyped older adults that were classified as nonsarcopenic or sarcopenic based on sex-specific criteria described by the European Working Group on Sarcopenia in Older People. PCr content was lower in muscle from older adults with sarcopenia compared to controls, while PDE2 was elevated. Percutaneous biopsy specimens of the vastus lateralis were obtained for metabolomic and lipidomic analyses. Lower PCr was related to higher muscle creatine. PDE2 was associated with glycerol-phosphoethanolamine levels, a putative marker of phospholipid membrane damage. Lipidomic analyses revealed that the major phospholipids, (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol) were elevated in sarcopenic muscle and were inversely related to muscle volume and peak power. These data suggest phosphorus metabolites and phospholipids are associated with the loss of skeletal muscle mass and function in older adults.


Subject(s)
Muscle, Skeletal/metabolism , Oligonucleotides/metabolism , Phosphocreatine/metabolism , Phospholipids/metabolism , Sarcopenia/physiopathology , Aged , Female , Humans , Male
6.
Int J Sports Physiol Perform ; 15(5): 690-695, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32000136

ABSTRACT

BACKGROUND: Half-marathon races have become increasingly more popular with many recreational athletes all around the world. New and recreational runners are likely to have the greatest need for training advice to set running paces during long-distance races. PURPOSE: To develop a simple equation to estimate half-marathon time from the Cooper test and verify its validity. METHODS: One hundred ninety-eight recreational runners (177 men and 21 women, 40 [6.8] years and 33.7 [8] years, respectively) participated in this study. All runners completed the Cooper test 7 to 10 days prior to races. A stepwise multiple regression analysis was performed to select the main predictors of half-marathon time. RESULTS: Simple correlation analysis showed that Cooper test performance (distance) was a good construct to estimate half-marathon time (r = -.906; 95% confidence interval, -0.927 to -0.877; P < .0001). The authors also derived an equation with a high predictive validity (R2 = .82; standard error of estimation = 5.19 min) and low systematic bias (mean differences between the predicted value and the criterion of 0.48 [5.2] min). Finally, the concordance coefficient of correlation (.9038) and proportional bias analysis (Kendall τ = -.0799; 95% confidence interval, -0.184 to 0.00453; P = .09) confirmed a good concurrent validity. CONCLUSION: In this study, the authors derived an equation from the Cooper test data with a high predictive and concurrent validity and low bias.


Subject(s)
Exercise Test/statistics & numerical data , Physical Endurance/physiology , Regression Analysis , Running/physiology , Adult , Female , Heart Rate , Humans , Male , Models, Statistical , Perception/physiology , Physical Exertion/physiology , Reproducibility of Results , Time Factors
7.
J Gerontol A Biol Sci Med Sci ; 75(9): 1744-1753, 2020 09 16.
Article in English | MEDLINE | ID: mdl-31907525

ABSTRACT

BACKGROUND: Older adults exposed to periods of inactivity during hospitalization, illness, or injury lose muscle mass and strength. This, in turn, predisposes poor recovery of physical function upon reambulation and represents a significant health risk for older adults. Bed rest (BR) results in altered skeletal muscle fuel metabolism and loss of oxidative capacity that have recently been linked to the muscle atrophy program. Our primary objective was to explore the effects of BR on mitochondrial energetics in muscle from older adults. A secondary objective was to examine the effect of ß-hydroxy-ß-methylbuturate (HMB) supplementation on mitochondrial energetics. METHODS: We studied 20 older adults before and after a 10-day BR intervention, who consumed a complete oral nutritional supplement (ONS) with HMB (3.0 g/d HMB, n = 11) or without HMB (CON, n = 9). Percutaneous biopsies of the vastus lateralis were obtained to determine mitochondrial respiration and H2O2 emission in permeabilized muscle fibers along with markers of content. RNA sequencing and lipidomics analyses were also conducted. RESULTS: We found a significant up-regulation of collagen synthesis and down-regulation of ribosome, oxidative metabolism and mitochondrial gene transcripts following BR in the CON group. Alterations to these gene transcripts were significantly blunted in the HMB group. Mitochondrial respiration and markers of content were both reduced and H2O2 emission was elevated in both groups following BR. CONCLUSIONS: In summary, 10 days of BR in older adults causes a significant deterioration in mitochondrial energetics, while transcriptomic profiling revealed that some of these negative effects may be attenuated by an ONS containing HMB.


Subject(s)
Bed Rest/adverse effects , Energy Metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Aged , Biopsy , Dietary Supplements , Energy Metabolism/drug effects , Humans , Lipidomics , Male , Middle Aged , Mitochondria, Muscle/drug effects , Muscle, Skeletal/pathology , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Valerates/therapeutic use
8.
Am J Physiol Endocrinol Metab ; 317(5): E899-E910, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31479303

ABSTRACT

Skeletal muscle atrophy is a clinically important outcome of disuse because of injury, immobilization, or bed rest. Disuse atrophy is accompanied by mitochondrial dysfunction, which likely contributes to activation of the muscle atrophy program. However, the linkage of muscle mass and mitochondrial energetics during disuse atrophy and its recovery is incompletely understood. Transcriptomic analysis of muscle biopsies from healthy older adults subject to complete bed rest revealed marked inhibition of mitochondrial energy metabolic pathways. To determine the temporal sequence of muscle atrophy and changes in intramyocellular lipid and mitochondrial energetics, we conducted a time course of hind limb unloading-induced atrophy in adult mice. Mitochondrial respiration and calcium retention capacity were diminished, whereas H2O2 emission was increased within 3 days of unloading before significant muscle atrophy. These changes were associated with a decrease in total cardiolipin and profound changes in remodeled cardiolipin species. Hind limb unloading performed in muscle-specific peroxisome proliferator-activated receptor-γ coactivator-1α/ß knockout mice, a model of mitochondrial dysfunction, did not affect muscle atrophy but impacted muscle function. These data suggest early mitochondrial remodeling affects muscle function but not mass during disuse atrophy. Early alterations in mitochondrial energetics and lipid remodeling may represent novel targets to prevent muscle functional impairment caused by disuse and to enhance recovery from periods of muscle atrophy.


Subject(s)
Energy Metabolism , Mitochondria, Muscle/metabolism , Muscular Disorders, Atrophic/metabolism , Aged , Animals , Bed Rest , Calcium/metabolism , Cardiolipins/metabolism , Female , Hindlimb Suspension , Humans , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Muscular Disorders, Atrophic/physiopathology , Oxygen Consumption , Recovery of Function , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
9.
Prog Cardiovasc Dis ; 62(1): 60-67, 2019.
Article in English | MEDLINE | ID: mdl-30610883

ABSTRACT

The Precision Medicine Initiative seeks to develop new approaches for disease treatment and prevention that considers the individual variation in genes, environment, and lifestyle for each person. To date, the focus has been on genetic drivers of disease risk and development but has now begun to incorporate lifestyle induced changes in phenotype to enhance treatments. Healthy Living Medicine is an emerging paradigm that focuses on moving more and sitting less, consuming a healthy diet, maintaining body weight and not smoking. A wealth of clinical trials has demonstrated the protective effects of high cardiorespiratory fitness, physical activity (PA), and exercise on all-cause mortality, and prevention of developing cardiovascular disease (CVD), obesity and type 2 diabetes (T2D). This review will summarize the impact of PA and exercise on modifying risk of disease from genetics in the general population and those with CVD, obesity and T2D.


Subject(s)
Delivery of Health Care, Integrated/methods , Genomics/methods , Health Promotion/methods , Healthy Lifestyle , Patient-Centered Care/methods , Precision Medicine/methods , Risk Reduction Behavior , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/prevention & control , Diet, Healthy , Exercise , Genetic Predisposition to Disease , Health Status , Humans , Obesity/epidemiology , Obesity/genetics , Obesity/prevention & control , Protective Factors , Risk Factors , Sedentary Behavior , Time Factors
10.
J Cachexia Sarcopenia Muscle ; 9(2): 279-294, 2018 04.
Article in English | MEDLINE | ID: mdl-29368427

ABSTRACT

BACKGROUND: The concept of mitochondrial dysfunction in ageing muscle is highly controversial. In addition, emerging evidence suggests that reduced muscle oxidative capacity and efficiency underlie the aetiology of mobility loss in older adults. Here, we hypothesized that studying well-phenotyped older cohorts across a wide range of physical activity would unveil a range of mitochondrial function in skeletal muscle and in turn allow us to more clearly examine the impact of age per se on mitochondrial energetics. This also enabled us to more clearly define the relationships between mitochondrial energetics and muscle lipid content with clinically relevant assessments of muscle and physical function. METHODS: Thirty-nine volunteers were recruited to the following study groups: young active (YA, n = 2 women/8 men, age = 31.2 ± 5.4 years), older active (OA, n = 2 women/8 men, age = 67.5 ± 2.7 years), and older sedentary (OS, n = 8 women/11 men, age = 70.7 ± 4.7 years). Participants completed a graded exercise test to determine fitness (VO2 peak), a submaximal exercise test to determine exercise efficiency, and daily physical activity was recorded using a tri-axial armband accelerometer. Mitochondrial energetics were determined by (i) 31 P magnetic resonance spectroscopy and (ii) respirometry of fibre bundles from vastus lateralis biopsies. Quadriceps function was assessed by isokinetic dynamometry and physical function by the short physical performance battery and stair climb test. RESULTS: Daily physical activity energy expenditure was significantly lower in OS, compared with YA and OA groups. Despite fitness being higher in YA compared with OA and OS, mitochondrial respiration, maximum mitochondrial capacity, Maximal ATP production/Oxygen consumption (P/O) ratio, and exercise efficiency were similar in YA and OA groups and were significantly lower in OS. P/O ratio was correlated with exercise efficiency. Time to complete the stair climb and repeated chair stand tests were significantly greater for OS. Interestingly, maximum mitochondrial capacity was related to muscle contractile performance and physical function. CONCLUSIONS: Older adults who maintain a high amount of physical activity have better mitochondrial capacity, similar to highly active younger adults, and this is related to their better muscle quality, exercise efficiency, and physical performance. This suggests that mitochondria could be an important therapeutic target for sedentary ageing associated conditions including sarcopenia, dynapenia, and loss of physical function.


Subject(s)
Exercise/physiology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Adult , Female , Humans , Male , Middle Aged
11.
J Appl Physiol (1985) ; 123(5): 1092-1100, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28705993

ABSTRACT

Loss of muscle mass during periods of disuse likely has negative health consequences for older adults. We have previously shown that ß-hydroxy-ß-methylbutyrate (HMB) supplementation during 10 days of strict bed rest (BR) attenuates the loss of lean mass in older adults. To elucidate potential molecular mechanisms of HMB effects on muscle during BR and resistance training rehabilitation (RT), we examined mediators of skeletal muscle mitochondrial dynamics, autophagy and atrophy, and intramyocellular lipids. Nineteen older adults (60-76 yr) completed 10 days BR followed by 8-wk RT rehabilitation. Subjects were randomized to either HMB (3 g/day HMB; n = 11) or control (CON; n = 8) groups. Skeletal muscle cross-sectional area (CSA) was determined by histology from percutaneous vastus lateralis biopsies. We measured protein markers of mitochondrial content [oxidative phosphorylation (OXPHOS)], fusion and fission (MFN2, OPA1, FIS1, and DRP1), autophagy (Beclin1, LC3B, and BNIP3), and atrophy [poly-ubiquinated proteins (poly-ub)] by Western blot. Fatty acid composition of several lipid classes in skeletal muscle was measured by infusion-MS analysis. Poly-ub proteins and OXPHOS complex I increased in both groups following BR (P < 0.05, main effect for time), and muscle triglyceride content tended to increase following BR in the HMB group (P = 0.055). RT rehabilitation increased OXPHOS complex II protein (P < 0.05), and total OXPHOS content tended (P = 0.0504) to be higher in HMB group. In addition, higher levels of DRP1 and MFN2 were maintained in the HMB group after RT (P < 0.05). BNIP3 and poly-ub proteins were significantly reduced following rehabilitation in both groups (P < 0.05). Collectively, these data suggest that HMB influences mitochondrial dynamics and lipid metabolism during disuse atrophy and rehabilitation.NEW & NOTEWORTHY Mitochondrial content and dynamics remained unchanged over 10 days of BR in older adults. HMB stimulated intramuscular lipid storage as triacylglycerol following 10 days of bed rest (BR) and maintained higher mitochondrial OXPHOS content and dynamics during the 8-wk resistance exercise rehabilitation program.


Subject(s)
Bed Rest/adverse effects , Lipid Metabolism/drug effects , Mitochondria, Muscle/drug effects , Mitochondrial Dynamics/drug effects , Quadriceps Muscle/drug effects , Sarcopenia/drug therapy , Valerates/therapeutic use , Age Factors , Aged , Autophagy/drug effects , Double-Blind Method , Energy Metabolism/drug effects , Female , Humans , Male , Middle Aged , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mitochondrial Proteins/metabolism , Prospective Studies , Proteolysis/drug effects , Quadriceps Muscle/metabolism , Quadriceps Muscle/pathology , Resistance Training , Sarcopenia/etiology , Sarcopenia/metabolism , Sarcopenia/pathology , Signal Transduction/drug effects , Time Factors , Treatment Outcome
12.
J Gerontol A Biol Sci Med Sci ; 72(4): 535-542, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27325231

ABSTRACT

BACKGROUND: Considerable debate continues to surround the concept of mitochondrial dysfunction in aging muscle. We tested the overall hypothesis that age per se does not influence mitochondrial function and markers of mitochondria quality control, that is, expression of fusion, fission, and autophagy proteins. We also investigated the influence of cardiorespiratory fitness (VO2max) and adiposity (body mass index) on these associations. METHODS: Percutaneous biopsies of the vastus lateralis were obtained from sedentary young (n = 14, 24±3 years), middle-aged (n = 24, 41±9 years) and older adults (n = 20, 78±5 years). A physically active group of young adults (n = 10, 27±5 years) was studied as a control. Mitochondrial respiration was determined in saponin permeabilized fiber bundles. Fusion, fission and autophagy protein expression was determined by Western blot. Cardiorespiratory fitness was determined by a graded exercise test. RESULTS: Mitochondrial respiratory capacity and expression of fusion (OPA1 and MFN2) and fission (FIS1) proteins were not different among sedentary groups despite a wide age range (21 to 88 years). Mitochondrial respiratory capacity and fusion and fission proteins were, however, negatively associated with body mass index, and mitochondrial respiratory capacity was positively associated with cardiorespiratory fitness. The young active group had higher respiration, complex I and II respiratory control ratios, and expression of fusion and fission proteins. Finally, the expression of fusion, fission, and autophagy proteins were linked with mitochondrial respiration. CONCLUSIONS: Mitochondrial respiration and markers of mitochondrial dynamics (fusion and fission) are not associated with chronological age per se, but rather are more strongly associated with body mass index and cardiorespiratory fitness.


Subject(s)
Mitochondria/metabolism , Muscle, Skeletal/metabolism , Adult , Age Factors , Aged , Aged, 80 and over , Body Mass Index , Cardiorespiratory Fitness , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Young Adult
13.
J Appl Biomech ; 33(2): 144-152, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27918682

ABSTRACT

The main aim of this study was to analyze the effect of resistance training programs differing in set configuration on mechanical force-velocity profiles. Thirteen participants performed 10 unilateral knee extension training sessions over 5 weeks. Each limb was randomized to one of the following set configurations: traditional (4 sets of 8 repetitions at maximum intended velocity, 10RM load, 3-min pause between sets) or interrepetition rest (32 maximum intended velocity repetitions, 10RM load, 17.4 s of rest between each repetition). Velocity of each repetition was recorded throughout the program. Before and after training, individual linear force velocities were calculated, and the following parameters were obtained: force and velocity axis intercept, slope, and estimated maximum power. Mean velocity was higher throughout the program for interrepetition rest configuration (0.54 ± 0.01 vs. 0.48 ± 0.01 m∙s-1 for interrepetition rest, and traditional configuration respectively; main effect of set configuration: P < .001). There was a significant increase in force and velocity intercepts, but a steeper negative slope after both training protocols (main effect of time: P < .001 for every variable). Differences in resistance training velocity did not affect the adaptations. Our results suggest that, in a short-term program, maximum intended rather than actual velocity is a key factor to modulate strength adaptations.


Subject(s)
Adaptation, Physiological/physiology , Movement/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Physical Fitness/physiology , Resistance Training/methods , Female , Humans , Knee Joint/physiology , Male , Young Adult
15.
J Appl Physiol (1985) ; 121(4): 878-884, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27516537

ABSTRACT

We examined single muscle fiber contractile function of the oldest-old (3F/2M, 89 ± 1 yr old) enrolled in The Health, Aging, and Body Composition Study (The Health ABC Study). Vastus lateralis muscle biopsies were obtained and single muscle fiber function was determined (n = 105) prior to myosin heavy chain (MHC) isoform identification with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cross-sectional area of MHC I muscle fibers (5,576 ± 333 µm2; n = 58) was 21% larger (P < 0.05) than MHC IIa fibers (4,518 ± 386 µm2; n = 47). Normalized power (an indicator of muscle fiber quality incorporating size, strength, and speed) of MHC I and IIa muscle fibers was 2.3 ± 0.1 and 17.4 ± 0.8 W/l, respectively. Compared with previous research from our lab using identical procedures, MHC I normalized power was 28% higher than healthy 20 yr olds and similar to younger octogenarians (∼80 yr old). Normalized power of MHC IIa fibers was 63% greater than 20 yr olds and 39% greater than younger octogenarians. These comparative data suggest that power output per unit size (i.e., muscle quality) of remaining muscle fibers improves with age, a phenomenon more pronounced in MHC IIa fibers. Age-related single muscle fiber quality improvements may be a compensatory mechanism to help offset decrements in whole muscle function.


Subject(s)
Aging/physiology , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle Strength/physiology , Quadriceps Muscle/physiology , Aged, 80 and over , Female , Humans , Male
16.
Obesity (Silver Spring) ; 23(12): 2454-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26537198

ABSTRACT

OBJECTIVE: Roux-en-Y gastric bypass (RYGB) surgery can cause profound weight loss and improve overall cardiometabolic risk factors. Exercise (EX) training following RYGB can provide additional improvements in insulin sensitivity (SI ) and cardiorespiratory fitness. However, it remains unknown whether a specific amount of EX post-RYGB is required to achieve additional benefits. METHODS: We performed a post hoc analysis of participants who were randomized into either a 6-month structured EX program or a health education control (CON). The EX group (n = 56) was divided into tertiles according to the amount of weekly exercise performed, compared with CON (n = 42): low-EX = 54 ± 8; middle-EX = 129 ± 4; and high-EX = 286 ± 40 min per week. RESULTS: The high-EX lost a significantly greater amount of body weight, total fat mass, and abdominal deep subcutaneous abdominal fat compared with CON (P < 0.005). SI improved to a greater extent in both the middle-EX and high-EX compared with CON (P < 0.04). Physical fitness (VO2 max) significantly improved in the high-EX (9.3% ± 4.2%) compared with CON (-6.0 ± 2.4%) (P < 0.001). Skeletal muscle mitochondrial State 4 (P < 0.002) and 3 (P < 0.04) respiration was significantly higher in the high-EX compared with CON. CONCLUSIONS: A modest volume of structured exercise provides additional improvements in insulin sensitivity following RYGB, but higher volumes of exercise are required to induce additional weight loss, changes in body composition, and improvements in cardiorespiratory fitness and skeletal muscle mitochondrial capacity.


Subject(s)
Cardiovascular Diseases/prevention & control , Exercise Therapy/methods , Gastric Bypass/rehabilitation , Obesity/therapy , Adult , Body Composition , Body Weight , Cardiovascular Diseases/etiology , Exercise/physiology , Female , Humans , Insulin Resistance , Male , Middle Aged , Obesity/complications , Physical Fitness , Postoperative Period , Risk Factors , Time Factors , Weight Loss
17.
Diabetes ; 64(11): 3737-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26293505

ABSTRACT

Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery-induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity.


Subject(s)
Exercise/physiology , Gastric Bypass , Insulin Resistance/physiology , Lipid Metabolism/physiology , Mitochondria, Muscle/metabolism , Obesity/surgery , Weight Loss/physiology , Adult , Blood Glucose/metabolism , Female , Glucose Tolerance Test , Humans , Insulin/blood , Male , Middle Aged , Obesity/metabolism
18.
J Clin Endocrinol Metab ; 99(11): 4307-14, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25105736

ABSTRACT

CONTEXT: African-American women (AAW) have an increased risk of developing type 2 diabetes compared with Caucasian women (CW). Lower insulin sensitivity has been reported in AAW, but the reasons for this racial difference and the contributions of liver versus skeletal muscle are incompletely understood. OBJECTIVE: We tested the hypothesis that young, nonobese AAW manifest lower insulin sensitivity specific to skeletal muscle, not liver, and is accompanied by lower skeletal muscle mitochondrial oxidative capacity. PARTICIPANTS AND MAIN OUTCOME MEASURES: Twenty-two nonobese (body mass index 22.7 ± 3.1 kg/m(2)) AAW and 22 matched CW (body mass index 22.7 ± 3.1 kg/m(2)) underwent characterization of body composition, objectively assessed habitual physical activity, and insulin sensitivity with euglycemic clamps and stable-isotope tracers. Skeletal muscle biopsies were performed for lipid content, fiber typing, and mitochondrial measurements. RESULTS: Peripheral insulin sensitivity was 26% lower in AAW (P < .01), but hepatic insulin sensitivity was similar between groups. Physical activity levels were similar between groups. Lower insulin sensitivity in AAW was not explained by total or central adiposity. Skeletal muscle triglyceride content was similar, but mitochondrial content was lower in AAW. Mitochondrial respiration was 24% lower in AAW and correlated with skeletal muscle insulin sensitivity (r = 0.33, P < .05). CONCLUSION: When compared with CW, AAW have similar hepatic insulin sensitivity but a muscle phenotype characterized by both lower insulin sensitivity and lower mitochondrial oxidative capacity. These observations occur in the absence of obesity and are not explained by physical activity. The only factor associated with lower insulin sensitivity in AAW was mitochondrial oxidative capacity. Because exercise training improves both mitochondrial capacity and insulin sensitivity, we suggest that it may be of particular benefit as a strategy for diabetes prevention in AAW.


Subject(s)
Black or African American , Diabetes Mellitus, Type 2/ethnology , Insulin Resistance/physiology , Mitochondria/metabolism , White People , Adolescent , Adult , Diabetes Mellitus, Type 2/metabolism , Exercise , Female , Glucose Clamp Technique , Humans , Life Style , Muscle, Skeletal/metabolism , Obesity/ethnology , Obesity/metabolism , Plant Extracts/metabolism , Young Adult
19.
Aviat Space Environ Med ; 84(8): 789-96, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23926653

ABSTRACT

INTRODUCTION: Studies of real and simulated microgravity exposure show the lower limb muscles atrophy to the greatest extent, with the calf muscles being most affected and most difficult to target with exercise countermeasures. This ground-based study examined the metabolic involvement of the thigh and calf muscles during two cycle exercise protocols (moderate and high intensity) central to the exercise countermeasures program on the International Space Station. METHODS: Intramuscular glycogen and triglyceride levels were quantified in the vastus lateralis and soleus muscles before and after a moderate (current ISS prescription: 45 min at 55% VO(2max), 131 +/- 12 W) and high (proposed ISS prescription: 8 x 30-s intervals at 150% VO(2max), 459 +/- 34 W) intensity cycle exercise bout in nine individuals. RESULTS: During moderate intensity cycling, glycogen was significantly reduced in the vastus lateralis (114 +/- 27 mmol x kg(-1) dry weight) and remained unchanged in the soleus. High intensity cycling significantly reduced glycogen in both muscles, but the vastus lateralis (151 +/- 25 mmol x kg(-1) dry weight) used significantly more (-160%) than the soleus (59 +/- 11 mmol x kg(-1) dry weight). Intramuscular triglycerides were unchanged in both muscles at both intensities. DISCUSSION: These findings, coupled with other ground-based studies, provide strong support for high intensity cycling being a more appropriate component of the ISS prescription for upper and lower leg skeletal muscle health and cardiorespiratory fitness, although additional exercise paradigms that target the calf are warranted. These muscle-specific findings should be considered when designing exercise strategies for combating conditions of sarcopenia and muscle wasting on Earth.


Subject(s)
Exercise Test , Lower Extremity/physiology , Muscle, Skeletal/metabolism , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Adult , Aerospace Medicine , Body Water/metabolism , Citrate (si)-Synthase/metabolism , Female , Glycogen/metabolism , Glycogen Phosphorylase/metabolism , Heart Rate/physiology , Humans , Male , Oxygen Consumption/physiology , Physical Exertion/physiology , Triglycerides/metabolism , Weightlessness
20.
Muscle Nerve ; 48(4): 591-3, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23553823

ABSTRACT

INTRODUCTION: We examined if epinephrine in the local anesthetic to help control incision-related bleeding interferes with molecular measurements obtained with the Duchenne-Bergström percutaneous needle biopsy technique for sampling human skeletal muscle. METHODS: Three groups received 2.5-3.0 ml of 1% lidocaine in 2 injections: (1) 0.5-1.0 ml superficially, which varied among the groups according to (i) -Epi; intra- and subcutaneous without epinephrine, (ii) +Epi -Fascia; intra- and subcutaneous with epinephrine, avoiding the fascia, and (iii) +Epi +Fascia; intra- and subcutaneous with epinephrine, directing a small amount (∽0.2 ml) into the fascia area; and (2) ∽2.0 ml without epinephrine into the fascia area for all subjects. A muscle biopsy was obtained 5-10 min later for IL-6 and MuRF-1 mRNA levels. RESULTS: IL-6 mRNA levels were low in -Epi and +Epi -Fascia, but ∽300-fold higher in +Epi +Fascia. MuRF-1 mRNA levels were similar among the groups. CONCLUSIONS: Lidocaine with epinephrine can confound intramuscular measurements from needle biopsies, but this can be avoided with a careful injection approach.


Subject(s)
Anesthetics, Local/adverse effects , Epinephrine/adverse effects , Lidocaine/adverse effects , Muscle, Skeletal/drug effects , Transcription, Genetic/drug effects , Vasoconstrictor Agents/adverse effects , Adult , Anesthetics, Local/administration & dosage , Biopsy, Needle , Epinephrine/administration & dosage , Humans , Injections/classification , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Interleukin-6/metabolism , Lidocaine/administration & dosage , Male , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/biosynthesis , Muscle Proteins/genetics , Muscle, Skeletal/pathology , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/biosynthesis , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/biosynthesis , Ubiquitin-Protein Ligases/genetics , Vasoconstrictor Agents/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...