Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37901602

ABSTRACT

Aging is associated with a decline in visual function and increased prevalence of ocular disease, correlating with changes in the transcriptome and epigenome of cells in the eye. Here, we sought to identify the transcriptional mechanisms that are necessary to maintain photoreceptor viability and function during aging. To do this, we performed a targeted photoreceptor-specific RNAi screen in Drosophila to identify transcriptional regulators whose knockdown results in premature, age-dependent retinal degeneration. From an initial set of 155 RNAi lines each targeting a unique gene and spanning a diverse set of transcription factors, chromatin remodelers, and histone modifiers, we identified 18 high-confidence target genes whose decreased expression in adult photoreceptors leads to premature and progressive retinal degeneration. These 18 target genes were enriched for factors involved in the regulation of transcription initiation, pausing, and elongation, suggesting that these processes are essential for maintaining the health of aging photoreceptors. To identify the genes regulated by these factors, we profiled the photoreceptor transcriptome in a subset of lines. Strikingly, two of the 18 target genes, Spt5 and domino, show similar changes in gene expression to those observed in photoreceptors with advanced age. Together, our data suggest that dysregulation of factors involved in transcription initiation and elongation plays a key role in shaping the transcriptome of aging photoreceptors. Further, our findings indicate that the age-dependent changes in gene expression not only correlate but might also contribute to an increased risk of retinal degeneration.

2.
Redox Biol ; 63: 102723, 2023 07.
Article in English | MEDLINE | ID: mdl-37146512

ABSTRACT

The retina is one of the highest oxygen-consuming tissues because visual transduction and light signaling processes require large amounts of ATP. Thus, because of the high energy demand, oxygen-rich environment, and tissue transparency, the eye is susceptible to excess production of reactive oxygen species (ROS) resulting in oxidative stress. Oxidative stress in the eye is associated with the development and progression of ocular diseases including cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy. ROS can modify and damage cellular proteins, but can also be involved in redox signaling. In particular, the thiol groups of cysteines can undergo reversible or irreversible oxidative post-translational modifications (PTMs). Identifying the redox-sensitive cysteines on a proteome-wide scale provides insight into those proteins that act as redox sensors or become irreversibly damaged upon exposure to oxidative stress. In this study, we profiled the redox proteome of the Drosophila eye under prolonged, high intensity blue light exposure and age using iodoacetamide isobaric label sixplex reagents (iodo-TMT) to identify changes in cysteine availability. Although redox metabolite analysis of the major antioxidant, glutathione, revealed similar ratios of its oxidized and reduced form in aged or light-stressed eyes, we observed different changes in the redox proteome under these conditions. Both conditions resulted in significant oxidation of proteins involved in phototransduction and photoreceptor maintenance but affected distinct targets and cysteine residues. Moreover, redox changes induced by blue light exposure were accompanied by a large reduction in light sensitivity that did not arise from a reduction in the photopigment level, suggesting that the redox-sensitive cysteines we identified in the phototransduction machinery might contribute to light adaptation. Our data provide a comprehensive description of the redox proteome of Drosophila eye tissue under light stress and aging and suggest how redox signaling might contribute to light adaptation in response to acute light stress.


Subject(s)
Cysteine , Proteome , Animals , Cysteine/metabolism , Proteome/metabolism , Drosophila melanogaster/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Oxidation-Reduction , Drosophila/metabolism , Light Signal Transduction , Oxygen
3.
Genes (Basel) ; 13(2)2022 01 29.
Article in English | MEDLINE | ID: mdl-35205309

ABSTRACT

Advanced age is one of the leading risk factors for vision loss and eye disease. Photoreceptors are the primary sensory neurons of the eye. The extended photoreceptor cell lifespan, in addition to its high metabolic needs due to phototransduction, makes it critical for these neurons to continually respond to the stresses associated with aging by mounting an appropriate gene expression response. Here, we sought to untangle the more general neuronal age-dependent transcriptional signature of photoreceptors with that induced by light stress. To do this, we aged flies or exposed them to various durations of blue light, followed by photoreceptor nuclei-specific transcriptome profiling. Using this approach, we identified genes that are both common and uniquely regulated by aging and light induced stress. Whereas both age and blue light induce expression of DNA repair genes and a neuronal-specific signature of death, both conditions result in downregulation of phototransduction. Interestingly, blue light uniquely induced genes that directly counteract the overactivation of the phototransduction signaling cascade. Lastly, unique gene expression changes in aging photoreceptors included the downregulation of genes involved in membrane potential homeostasis and mitochondrial function, as well as the upregulation of immune response genes. We propose that light stress contributes to the aging transcriptome of photoreceptors, but that there are also other environmental or intrinsic factors involved in age-associated photoreceptor gene expression signatures.


Subject(s)
Light Signal Transduction , Photoreceptor Cells , Gene Expression Profiling , Light Signal Transduction/genetics , Photoreceptor Cells/metabolism , Transcriptome
4.
PLoS Genet ; 18(1): e1010021, 2022 01.
Article in English | MEDLINE | ID: mdl-35100266

ABSTRACT

The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.


Subject(s)
CLOCK Proteins/physiology , Drosophila Proteins/physiology , Drosophila/genetics , Photoreceptor Cells, Invertebrate/metabolism , Retinal Degeneration/prevention & control , Transcription, Genetic/physiology , Aging/genetics , Animals , Circadian Clocks , Darkness , Light Signal Transduction/genetics , Retinal Degeneration/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...