Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Am Nat ; 193(5): 661-676, 2019 05.
Article in English | MEDLINE | ID: mdl-31002572

ABSTRACT

The metabolic theory of ecology (MTE) provides a general framework of allometric and thermal dependence that may be useful for predicting how climate change will affect disease spread. Using Daphnia magna and a microsporidian gut parasite, we conducted two experiments across a wide thermal range and fitted transmission models that utilize MTE submodels for transmission parameters. We decomposed transmission into contact rate and probability of infection and further decomposed probability of infection into a product of gut residence time (GRT) and per-parasite infection rate of gut cells. Contact rate generally increased with temperature and scaled positively with body size, whereas infection rate had a narrow hump-shaped thermal response and scaled negatively with body size. GRT increased with host size and was longest at extreme temperatures. GRT and infection rate inside the gut combined to create a 3.5 times higher probability of infection for the smallest relative to the largest individuals. Small temperature changes caused large differences in transmission. We also fit several alternative transmission models to data at individual temperatures. The more complex models-parasite antagonism or synergism and host heterogeneity-did not substantially improve the fit to the data. Our results show that transmission rate is the product of several distinct thermal and allometric functions that can be predicted continuously across temperature and host size using the MTE.


Subject(s)
Disease Transmission, Infectious , Models, Biological , Temperature , Animals , Climate Change , Daphnia , Ecology , Microsporidia
2.
J Evol Biol ; 31(6): 924-932, 2018 06.
Article in English | MEDLINE | ID: mdl-29672987

ABSTRACT

Theory predicts that fitness decline via mutation accumulation will depend on population size, but there are only a few direct tests of this key idea. To gain a qualitative understanding of the fitness effect of new mutations, we performed a mutation accumulation experiment with the facultative sexual rotifer Brachionus calyciflorus at six different population sizes under UV-C radiation. Lifetime reproduction assays conducted after ten and sixteen UV-C radiations showed that while small populations lost fitness, fitness losses diminished rapidly with increasing population size. Populations kept as low as 10 individuals were able to maintain fitness close to the nonmutagenized populations throughout the experiment indicating that selection was able to remove the majority of large effect mutations in small populations. Although our results also seem to imply that small populations are effectively immune to mutational decay, we caution against this interpretation. Given sufficient time, populations of moderate to large size can experience declines in fitness from accumulating weakly deleterious mutations as demonstrated by fitness estimates from simulations and, tentatively, from a long-term experiment with populations of moderate size. There is mounting evidence to suggest that mutational distributions contain a heavier tail of large effects. Our results suggest that this is also true when the mutational spectrum is altered by UV radiation.


Subject(s)
Rotifera/genetics , Rotifera/radiation effects , Ultraviolet Rays , Animals , Genetic Fitness , Mutation
3.
Proc Natl Acad Sci U S A ; 114(3): 534-539, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28053226

ABSTRACT

A leading hypothesis for the evolutionary maintenance of sexual reproduction proposes that sex is advantageous because it facilitates adaptation. Changes in the environment stimulate adaptation but not all changes are equivalent; a change may occur along one or multiple environmental dimensions. In two evolution experiments with the facultatively sexual rotifer Brachionus calyciflorus, we test how environmental complexity affects the evolution of sex by adapting replicate populations to various environments that differ from the original along one, two, or three environmental dimensions. Three different estimates of fitness (growth, lifetime reproduction, and population density) confirmed that populations adapted to their new environment. Growth measures revealed an intriguing cost of complex adaptations: populations that adapted to more complex environments lost greater amounts of fitness in the original environment. Furthermore, both experiments showed that B. calyciflorus became more sexual when adapting to a greater number of environmental dimensions. Common garden experiments confirmed that observed changes in sex were heritable. As environments in nature are inherently complex these findings help explain why sex is maintained in natural populations.


Subject(s)
Adaptation, Physiological , Biological Evolution , Rotifera/physiology , Sex , Acclimatization , Animals , Environment , Female , Genetic Fitness , Male , Reproduction/physiology , Rotifera/genetics , Rotifera/growth & development , Salinity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL