Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 17306, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39068200

ABSTRACT

Dimethyl 2-[2-(1-phenyl-4,5-dihydro-1H-imidazol-2-yl)hydrazinylidene]butanedioate (DIHB) and 8-(3-chlorophenyl)-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-dione (HDIT) are promising candidates for anticancer agents, the first analytical procedures of which are presented in this paper. The commercially available unmodified glassy carbon electrode (GCE) was used as a sensor for the individual and simultaneous differential pulse voltammetric (DPV) determination of these possible anticancer drugs. The findings concerning the electrochemical behaviour indicated that DIHB and HDIT display at GCE, as a sensor, the oxidation peaks at 1.18 and 0.98 V, respectively (vs. Ag/AgCl, 3.0 mol L-1 KCl) in the 0.125 mol L-1 acetate buffer of pH = 4.5, which were employed for their quantification. Various experimental parameters were carefully investigated, to achieve high sensitivity in voltammetric measurements. Finally, under the optimised conditions (t of 60 s, ΔEA of 75 mV, ν of 225 mV s-1, and tm of 2 ms), the proposed DPV procedure with the GCE demonstrated broad linear sensing ranges (1-200 nmol L-1-DIHB and 5-200 nmol L-1-HDIT), boasting the detection limits of 0.18 nmol L-1 for DIHB and 1.1 nmol L-1 for HDIT. Moreover, the developed procedure was distinguished by good selectivity, repeatability of DIHB and HDIT signals and sensor reproducibility. The practical application of this method was demonstrated by analysing the urine reference material without any prior treatment. The results showed that this environmentally friendly approach, with a modification-free sensor, is suitable for the sensitive, selective and rapid quantification of DIHB and HDIT.


Subject(s)
Antineoplastic Agents , Carbon , Electrochemical Techniques , Electrodes , Antineoplastic Agents/analysis , Carbon/chemistry , Humans , Electrochemical Techniques/methods , Limit of Detection , Oxidation-Reduction
2.
Sensors (Basel) ; 24(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38400283

ABSTRACT

In this work, a new voltammetric procedure for acyclovir (ACY) trace-level determination has been described. For this purpose, an electrochemically activated screen-printed carbon electrode (aSPCE) coupled with well-conductive electrolyte (CH3COONH4, CH3COOH and NH4Cl) was used for the first time. A commercially available SPCE sensor was electrochemically activated by conducting cyclic voltammetry (CV) scans in 0.1 mol L-1 NaOH solution and rinsed with deionized water before a series of measurements were taken. This treatment reduced the charge transfer resistance, increased the electrode active surface area and improved the kinetics of the electron transfer. The activation step and high conductivity of supporting electrolyte significantly improved the sensitivity of the procedure. The newly developed differential-pulse adsorptive stripping voltammetry (DPAdSV) procedure is characterized by having the lowest limit of detection among all voltammetric procedures currently described in the literature (0.12 nmol L-1), a wide linear range of the calibration curve (0.5-50.0 and 50.0-1000.0 nmol L-1) as well as extremely high sensitivity (90.24 nA nmol L-1) and was successfully applied in the determination of acyclovir in commercially available pharmaceuticals.

SELECTION OF CITATIONS
SEARCH DETAIL