Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Microlife ; 5: uqae004, 2024.
Article in English | MEDLINE | ID: mdl-38463165

ABSTRACT

Bacteriophages play a crucial role in shaping bacterial communities, yet the mechanisms by which nonmotile bacteriophages interact with their hosts remain poorly understood. This knowledge gap is especially pronounced in structured environments like soil, where spatial constraints and air-filled zones hinder aqueous diffusion. In soil, hyphae of filamentous microorganisms form a network of 'fungal highways' (FHs) that facilitate the dispersal of other microorganisms. We propose that FHs also promote bacteriophage dissemination. Viral particles can diffuse in liquid films surrounding hyphae or be transported by infectable (host) or uninfectable (nonhost) bacterial carriers coexisting on FH networks. To test this, two bacteriophages that infect Pseudomonas putida DSM291 (host) but not KT2440 (nonhost) were used. In the absence of carriers, bacteriophages showed limited diffusion on 3D-printed abiotic networks, but diffusion was significantly improved in Pythium ultimum-formed FHs when the number of connecting hyphae exceeded 20. Transport by both host and nonhost carriers enhanced bacteriophage dissemination. Host carriers were five times more effective in transporting bacteriophages, particularly in FHs with over 30 connecting hyphae. This study enhances our understanding of bacteriophage dissemination in nonsaturated environments like soils, highlighting the importance of biotic networks and bacterial hosts in facilitating this process.

2.
Lab Chip ; 24(7): 1930-1946, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38416560

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants and deliver a wide range of soil-based ecosystem services. Due to their conspicuous belowground lifestyle in a dark environment surrounded by soil particles, much is still to be learned about the influence of environmental (i.e., physical) cues on spore germination, hyphal morphogenesis and anastomosis/hyphal healing mechanisms. To fill existing gaps in AMF knowledge, we developed a new microfluidic platform - the AMF-SporeChip - to visualise the foraging behaviour of germinating Rhizophagus and Gigaspora spores and confront asymbiotic hyphae with physical obstacles. In combination with timelapse microscopy, the fungi could be examined at the cellular level and in real-time. The AMF-SporeChip allowed us to acquire movies with unprecedented visual clarity and therefore identify various exploration strategies of AMF asymbiotic hyphae. We witnessed tip-to-tip and tip-to-side hyphal anastomosis formation. Anastomosis involved directed hyphal growth in a "stop-and-go" manner, yielding visual evidence of pre-anastomosis signalling and decision-making. Remarkably, we also revealed a so-far undescribed reversible cytoplasmic retraction, including the formation of up to 8 septa upon retraction, as part of a highly dynamic space navigation, probably evolved to optimise foraging efficiency. Our findings demonstrated how AMF employ an intricate mechanism of space searching, involving reversible cytoplasmic retraction, branching and directional changes. In turn, the AMF-SporeChip is expected to open many future frontiers for AMF research.


Subject(s)
Glomeromycota , Mycorrhizae , Ecosystem , Symbiosis , Hyphae , Soil , Soil Microbiology
3.
Environ Microbiol Rep ; 16(1): e13205, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38018445

ABSTRACT

Soil and plant roots are colonized by highly complex and diverse communities of microbes. It has been proposed that bacteria and fungi have synergistic effects on litter decomposition, but experimental evidence supporting this claim is weak. In this study, we manipulated the composition of two microbial kingdoms (Bacteria and Fungi) in experimental microcosms. In microcosms that were inoculated with fungi, litter loss was 47% higher than in microcosms that were not inoculated or only inoculated with bacteria. Combined inoculation with both bacteria and fungi did not significantly enhance decomposition compared with the fungi-only treatments, and, as such, we found no evidence for complementary effects using our experimental setup. Inoculation with fungi also had a positive impact on plant growth after 4 and 8 weeks (480% and 710% growth stimulation, respectively). After 16 weeks, plant biomass was highest in microcosms where both bacteria and fungi were present pointing to fungal-bacterial complementarity in stimulating plant growth. Overall, this study suggests that fungi are the main decomposers of plant litter and that the inoculated fungi contribute to plant growth in our experimental system.


Subject(s)
Fungi , Plants , Fungi/genetics , Biomass , Plant Development , Plant Roots , Plant Leaves/microbiology , Ecosystem , Soil Microbiology
4.
Microlife ; 4: uqad042, 2023.
Article in English | MEDLINE | ID: mdl-37965130

ABSTRACT

This study presents an inexpensive approach for the macro- and microscopic observation of fungal mycelial growth. The 'fungal drops' method allows to investigate the development of a mycelial network in filamentous microorganisms at the colony and hyphal scales. A heterogeneous environment is created by depositing 15-20 µl drops on a hydrophobic surface at a fixed distance. This system is akin to a two-dimensional (2D) soil-like structure in which aqueous-pockets are intermixed with air-filled pores. The fungus (spores or mycelia) is inoculated into one of the drops, from which hyphal growth and exploration take place. Hyphal structures are assessed at different scales using stereoscopic and microscopic imaging. The former allows to evaluate the local response of regions within the colony (modular behaviour), while the latter can be used for fractal dimension analyses to describe the hyphal network architecture. The method was tested with several species to underpin the transferability to multiple species. In addition, two sets of experiments were carried out to demonstrate its use in fungal biology. First, mycelial reorganization of Fusarium oxysporum was assessed as a response to patches containing different nutrient concentrations. Second, the effect of interactions with the soil bacterium Pseudomonas putida on habitat colonization by the same fungus was assessed. This method appeared as fast and accessible, allowed for a high level of replication, and complements more complex experimental platforms. Coupled with image analysis, the fungal drops method provides new insights into the study of fungal modularity both macroscopically and at a single-hypha level.

5.
bioRxiv ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37904922

ABSTRACT

Background and Aims: Activating mutations in the CTNNB1 gene encoding ß-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). HCC with CTNNB1 mutations show profound alterations in lipid metabolism including increases in fatty acid oxidation and transformation of the phospholipidome, but it is unclear how these changes arise and whether they contribute to the oncogenic program in HCC. Methods: We employed untargeted lipidomics and targeted isotope tracing to quantify phospholipid production fluxes in an inducible human liver cell line expressing mutant ß-catenin, as well as in transgenic zebrafish with activated ß-catenin-driven HCC. Results: In both models, activated ß-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid flux analysis in human cells revealed a large reduction in phosphatidylcholine (PC) production rates as assayed by choline tracer incorporation. We developed isotope tracing lipid flux analysis for zebrafish and observed similar reductions in phosphatidylcholine synthesis flux accomplished by sex-specific mechanisms. Conclusions: The integration of isotope tracing with lipid abundances highlights specific lipid class transformations downstream of ß-catenin signaling in HCC and suggests future HCC-specific lipid metabolic targets.

6.
Curr Biol ; 33(13): 2646-2656.e4, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37301202

ABSTRACT

As an endosymbiont of the ecologically and medically relevant fungus Rhizopus microsporus, the toxin-producing bacterium Mycetohabitans rhizoxinica faces myriad challenges, such as evading the host's defense mechanisms. However, the bacterial effector(s) that facilitate the remarkable ability of M. rhizoxinica to freely migrate within fungal hyphae have thus far remained unknown. Here, we show that a transcription activator-like (TAL) effector released by endobacteria is an essential symbiosis factor. By combining microfluidics with fluorescence microscopy, we observed enrichment of TAL-deficient M. rhizoxinica in side hyphae. High-resolution live imaging showed the formation of septa at the base of infected hyphae, leading to the entrapment of endobacteria. Using a LIVE/DEAD stain, we demonstrate that the intracellular survival of trapped TAL-deficient bacteria is significantly reduced compared with wild-type M. rhizoxinica, indicative of a protective host response in the absence of TAL proteins. Subversion of host defense in TAL-competent endobacteria represents an unprecedented function of TAL effectors. Our data illustrate an unusual survival strategy of endosymbionts in the host and provide deeper insights into the dynamic interactions between bacteria and eukaryotes.


Subject(s)
Hyphae , Transcription Activator-Like Effectors , Bacteria , Symbiosis
7.
BMC Biol ; 20(1): 203, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104696

ABSTRACT

BACKGROUND: To disperse in water-unsaturated environments, such as the soil, bacteria rely on the availability and structure of water films forming on biotic and abiotic surfaces, and, especially, along fungal mycelia. Dispersal along such "fungal highways" may be driven both by mycelial physical properties and by interactions between bacteria and fungi. However, we still do not have a way to disentangle the biotic and abiotic elements. RESULTS: We designed and 3D printed two devices establishing stable liquid films that support bacteria dispersal in the absence of biotic interactions. The thickness of the liquid film determined the presence of hydraulic flow capable of transporting non-motile cells. In the absence of flow, only motile cells can disperse in the presence of an energy source. Non-motile cells could not disperse autonomously without flow but dispersed as "hitchhikers" when co-inoculated with motile cells. CONCLUSIONS: The 3D printed devices can be used as an abiotic control to study bacterial dispersal on hydrated surfaces, such as plant roots and fungal hyphae networks in the soil. By teasing apart the abiotic and biotic dimensions, these 3D printed devices will stimulate further research on microbial dispersal in soil and other water-unsaturated environments.


Subject(s)
Bacteria , Soil Microbiology , Printing, Three-Dimensional , Soil , Water
8.
FEMS Microbiol Rev ; 46(6)2022 11 02.
Article in English | MEDLINE | ID: mdl-36001464

ABSTRACT

This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes. More recently, fungi have been recognized as key components of the microbiome in other eukaryotes, such as humans, where they play a fundamental role not only in human pathogenesis, but also likely as commensals. In the food sector, fungi are used either directly or as fermenting agents and are often key players in the biotechnological industry, where they are responsible for the production of both bulk chemicals and antibiotics. Although the macroscopic fruiting bodies are immediately recognizable by most observers, the structure, function, and interactions of fungi with other microbes at the microscopic scale still remain largely hidden. Herein, we shed light on new advances in the emerging field of Fungi-on-a-Chip microfluidic technologies for single-cell studies on fungi. We discuss the development and application of microfluidic tools in the fields of medicine and biotechnology, as well as in-depth biological studies having significance for ecology and general natural processes. Finally, a future perspective is provided, highlighting new frontiers in which microfluidic technology can benefit this field.


Subject(s)
Ecosystem , Microfluidics , Humans , Symbiosis , Fungi , Lab-On-A-Chip Devices
9.
J Vis Exp ; (184)2022 06 23.
Article in English | MEDLINE | ID: mdl-35815981

ABSTRACT

Filamentous fungi are successful inhabitants of soil and play a major role in soil ecosystems, such as in the decomposition of organic and inorganic matter, as well as regulation of nutrient levels. There they also find numerous opportunities to interact with a variety of other microbes such as bacteria or other fungi. Studying fungal interactions at the cellular level, however, can be challenging owing to the black box-like nature of soil. New microfluidic tools are being developed for the study of fungal interactions; two platforms designed to study bacterial-fungal and fungal-fungal interactions are highlighted. Within these microchannels, fungal-microbial interactions can be monitored in controlled physico-chemical environments at higher temporal and spatial resolution than previously possible. Application of these tools have yielded numerous novel biological insights, such as the observation of bacterial polar attachment to hyphae or revealing uncharacterised fungal-fungal antagonisms. A key feature of these methodologies regards the ease of use of this tool by non-experts, yielding highly translatable technologies for use in microbiology labs.


Subject(s)
Ecosystem , Soil Microbiology , Bacteria , Fungi , Microbial Interactions , Microfluidics , Soil/chemistry
10.
J Fungi (Basel) ; 8(6)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35736082

ABSTRACT

Creating unique microenvironments, hyphal surfaces and their surroundings allow for spatially distinct microbial interactions and functions at the microscale. Using a microfluidic system and pH-sensitive whole-cell bioreporters (Synechocystis sp. PCC6803) attached to hyphae, we spatially resolved the pH along surfaces of growing hyphae of the basidiomycete Coprinopsis cinerea. Time-lapse microscopy analysis of ratiometric fluorescence signals of >2400 individual bioreporters revealed an overall pH drop from 6.3 ± 0.4 (n = 2441) to 5.0 ± 0.3 (n = 2497) within 7 h after pH bioreporter loading to hyphal surfaces. The pH along hyphal surfaces varied significantly (p < 0.05), with pH at hyphal tips being on average ~0.8 pH units lower than at more mature hyphal parts near the entrance of the microfluidic observation chamber. Our data represent the first dynamic in vitro analysis of surface pH along growing hyphae at the micrometre scale. Such knowledge may improve our understanding of spatial, pH-dependent hyphal processes, such as the degradation of organic matter or mineral weathering.

11.
Trends Microbiol ; 30(6): 515-518, 2022 06.
Article in English | MEDLINE | ID: mdl-35346553

ABSTRACT

In recent years, microfluidic technologies have become widespread in biological science. However, the suitability of this technique for understanding different aspects of spore research has hardly been considered. Herein, we review recent developments in 'spores-on-a-chip' technologies, highlighting how they could be exploited to drive new frontiers in spore research.


Subject(s)
Lab-On-A-Chip Devices , Spores, Bacterial , Spores
12.
Front Microbiol ; 12: 652468, 2021.
Article in English | MEDLINE | ID: mdl-34108946

ABSTRACT

Phytopathogenic Verticillia cause Verticillium wilt on numerous economically important crops. Plant infection begins at the roots, where the fungus is confronted with rhizosphere inhabiting bacteria. The effects of different fluorescent pseudomonads, including some known biocontrol agents of other plant pathogens, on fungal growth of the haploid Verticillium dahliae and/or the amphidiploid Verticillium longisporum were compared on pectin-rich medium, in microfluidic interaction channels, allowing visualization of single hyphae, or on Arabidopsis thaliana roots. We found that the potential for formation of bacterial lipopeptide syringomycin resulted in stronger growth reduction effects on saprophytic Aspergillus nidulans compared to Verticillium spp. A more detailed analyses on bacterial-fungal co-cultivation in narrow interaction channels of microfluidic devices revealed that the strongest inhibitory potential was found for Pseudomonas protegens CHA0, with its inhibitory potential depending on the presence of the GacS/GacA system controlling several bacterial metabolites. Hyphal tip polarity was altered when V. longisporum was confronted with pseudomonads in narrow interaction channels, resulting in a curly morphology instead of straight hyphal tip growth. These results support the hypothesis that the fungus attempts to evade the bacterial confrontation. Alterations due to co-cultivation with bacteria could not only be observed in fungal morphology but also in fungal transcriptome. P. protegens CHA0 alters transcriptional profiles of V. longisporum during 2 h liquid media co-cultivation in pectin-rich medium. Genes required for degradation of and growth on the carbon source pectin were down-regulated, whereas transcripts involved in redox processes were up-regulated. Thus, the secondary metabolite mediated effect of Pseudomonas isolates on Verticillium species results in a complex transcriptional response, leading to decreased growth with precautions for self-protection combined with the initiation of a change in fungal growth direction. This interplay of bacterial effects on the pathogen can be beneficial to protect plants from infection, as shown with A. thaliana root experiments. Treatment of the roots with bacteria prior to infection with V. dahliae resulted in a significant reduction of fungal root colonization. Taken together we demonstrate how pseudomonads interfere with the growth of Verticillium spp. and show that these bacteria could serve in plant protection.

13.
Commun Biol ; 4(1): 262, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637874

ABSTRACT

Routinely, fungal-fungal interactions (FFI) are studied on agar surfaces. However, this format restricts high-resolution dynamic imaging. To gain experimental access to FFI at the hyphal level in real-time, we developed a microfluidic platform, a FFI device. This device utilises microchannel geometry to enhance the visibility of hyphal growth and provides control channels to allow comparisons between localised and systemic effects. We demonstrate its function by investigating the FFI between the biological control agent (BCA) Clonostachys rosea and the plant pathogen Fusarium graminearum. Microscope image analyses confirm the inhibitory effect of the necrotrophic BCA and we show that a loss of fluorescence in parasitised hyphae of GFP-tagged F. graminearum coincides with the detection of GFP in mycelium of C. rosea. The versatility of our device to operate under both water-saturated and nutrient-rich as well as dry and nutrient-deficient conditions, coupled with its spatio-temporal output, opens new opportunities to study relationships between fungi.


Subject(s)
Fusarium/physiology , Hyphae/physiology , Hypocreales/physiology , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microscopy, Fluorescence , Pest Control, Biological , Fusarium/genetics , Fusarium/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hypocreales/genetics , Hypocreales/metabolism , Microbial Viability , Time Factors
14.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33602804

ABSTRACT

Control over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regulatory hormone gibberellin (GA). Previously, a multicellular mathematical model predicted a GA maximum at the border of the meristematic and elongation zones. However, GA in roots was recently measured using a genetically encoded fluorescent biosensor, nlsGPS1, and found to be low in the meristematic zone grading to a maximum at the end of the elongation zone. Furthermore, the accumulation rate of exogenous GA was also found to be higher in the elongation zone. It was still unknown which biochemical activities were responsible for these mobile small molecule gradients and whether the spatiotemporal correlation between GA levels and cell length is important for root cell division and elongation patterns. Using a mathematical modeling approach in combination with high-resolution GA measurements in vivo, we now show how differentials in several biosynthetic enzyme steps contribute to the endogenous GA gradient and how differential cellular permeability contributes to an accumulation gradient of exogenous GA. We also analyzed the effects of altered GA distribution in roots and did not find significant phenotypes resulting from increased GA levels or signaling. We did find a substantial temporal delay between complementation of GA distribution and cell division and elongation phenotypes in a GA deficient mutant. Together, our results provide models of how GA gradients are directed and in turn direct root growth.


Subject(s)
Arabidopsis/growth & development , Biosensing Techniques/methods , Gene Expression Regulation, Plant , Gibberellins/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/growth & development , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins , Phenotype , Plant Roots/drug effects , Plant Roots/metabolism , Signal Transduction
15.
Environ Sci Technol ; 53(20): 11755-11763, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31532190

ABSTRACT

Phages (i.e., viruses that infect bacteria) have been considered as good tracers for the hydrological transport of colloids and (pathogenic) viruses. However, little is known about interactions of phages with (fungal) mycelia as the prevalent soil microbial biomass. Forming extensive and dense networks, mycelia provide significant surfaces for phage-hyphal interactions. Here, for the first time, we quantified the mycelial retention of phages in a microfluidic platform that allowed for defined fluid exchange around hyphae. Two common lytic tracer phages (Escherichia coli phage T4 and marine phage PSA-HS2) and two mycelia of differing surface properties (Coprinopsis cinerea and Pythium ultimum) were employed. Phage-hyphal interaction energies were approximated by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach of colloidal interaction. Our data show initial hyphal retention of phages of up to ≈4 × 107 plaque-forming unit (PFU) mm-2 (≈2550 PFU mm-2 s-1) with a retention efficiency depending on the hyphal and, to a lesser extent, the phage surface properties. Experimental data were supported by XDLVO calculations, which revealed the highest attractive forces for the interaction between hydrophobic T4 phages and hydrophobic C. cinerea surfaces. Our data suggest that mycelia may be relevant for the retention of phages in the subsurface and need to be considered in subsurface phage tracer studies. Mycelia-phage interactions may further be exploited for the development of novel strategies to reduce or hinder the transport of undesirable (bio) colloidal entities in environmental filter systems.


Subject(s)
Bacteriophages , Colloids , Microfluidics , Mycelium , Surface Properties
16.
Mol Microbiol ; 112(2): 605-619, 2019 08.
Article in English | MEDLINE | ID: mdl-31087720

ABSTRACT

Fungi defend their ecological niche against antagonists by producing antibiosis molecules. Some of these molecules are only produced upon confrontation with the antagonist. The basidiomycete Coprinopsis cinerea induces the expression of the sesquiterpene synthase-encoding gene cop6 and its two neighboring genes coding for cytochrome P450 monooxygenases in response to bacteria. We further investigated this regulation of cop6 and examined if the gene product is involved in the production of antibacterials. Cell-free supernatants of axenic cultures of the Gram-positive bacterium Bacillus subtilis were sufficient to induce cop6 transcription assessed using a fluorescent reporter strain. Use of this strain in a microfluidic device revealed that the cop6 gene was induced in all hyphae directly exposed to the supernatant and that induction occurred within less than one hour. Targeted replacement of the cop6 gene demonstrated the requirement of the encoded synthase for the biosynthesis of the sesquiterpene lagopodin B, a previously reported antibacterial compound from related species. Accordingly, lagopodin B from C. cinerea inhibited the growth of several Gram-positive bacteria including B. subtilis but not Gram-negative bacteria. Our results demonstrate that the C. cinerea vegetative mycelium responds to soluble compounds of a bacterial culture supernatant by local production of an antibacterial secondary metabolite.


Subject(s)
Agaricales/metabolism , Anti-Bacterial Agents/metabolism , Bacillus subtilis/physiology , Sesquiterpenes/metabolism , Agaricales/enzymology , Agaricales/genetics , Anti-Bacterial Agents/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Sesquiterpenes/pharmacology
17.
Curr Biol ; 29(11): 1854-1865.e5, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31104938

ABSTRACT

Root hairs are tubular protrusions of the root epidermis that significantly enlarge the exploitable soil volume in the rhizosphere. Trichoblasts, the cell type responsible for root hair formation, switch from cell elongation to tip growth through polarization of the growth machinery to a predefined root hair initiation domain (RHID) at the plasma membrane. The emergence of this polar domain resembles the establishment of cell polarity in other eukaryotic systems [1-3]. Rho-type GTPases of plants (ROPs) are among the first molecular determinants of the RHID [4, 5], and later play a central role in polar growth [6]. Numerous studies have elucidated mechanisms that position the RHID in the cell [7-9] or regulate ROP activity [10-18]. The molecular players that target ROPs to the RHID and initiate outgrowth, however, have not been identified. We dissected the timing of the growth machinery assembly in polarizing hair cells and found that positioning of molecular players and outgrowth are temporally separate processes that are each controlled by specific ROP guanine nucleotide exchange factors (GEFs). A functional analysis of trichoblast-specific GEFs revealed GEF3 to be required for normal ROP polarization and thus efficient root hair emergence, whereas GEF4 predominantly regulates subsequent tip growth. Ectopic expression of GEF3 induced the formation of spatially confined, ROP-recruiting domains in other cell types, demonstrating the role of GEF3 to serve as a membrane landmark during cell polarization.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Guanine Nucleotide Exchange Factors/genetics , Plant Roots/growth & development , rho GTP-Binding Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Plant Roots/genetics , rho GTP-Binding Proteins/metabolism
18.
ACS Sens ; 4(6): 1560-1568, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31062585

ABSTRACT

Ochratoxin A (OTA)-a mycotoxin produced by Aspergillus and Penicillium fungi-is a carcinogen and common trace contaminant in agricultural and processed food products. As consumption is detrimental to human and animal health, regular product monitoring is vital, and highly sensitive and portable OTA sensors are necessary in many circumstances. Herein, we report an ultrasensitive, electroanalytical aptasensor for precise determination of OTA at trace levels. The sensor leverages a DNA aptamer to capture OTA and silver metallization as a signal enhancer. Exonuclease I is used to digest unbound aptamers, engendering excellent background signal suppression and sensitivity enhancements. Efficient optimization of assay conditions is achieved using central composite design (CCD), allowing rapid evaluation of both the electrode and square wave voltammetry parameter space. The sensor exhibits excellent analytical performance, with a concentration limit of detection of 0.7 pg mL-1, a limit of quantitation of 2.48 pg mL-1, and a linear dynamic range ( R2 = 0.968) of over 6 orders of magnitude (between 1 pg mL-1 and 0.1 µg mL-1). Direct comparison with ultraperformance liquid chromatography (UPLC) indicates excellent analytical performance for standard solutions ( R2 = 0.995) and spiked beer samples ( R2 = 0.993), with almost quantitative recovery and less than 5% relative standard deviation (RSD).


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Exodeoxyribonucleases/chemistry , Ochratoxins/analysis , Silver/chemistry , Base Sequence , Beer/analysis , Carcinogens/analysis , Carcinogens/chemistry , DNA/chemistry , Food Contamination/analysis , Limit of Detection , Ochratoxins/chemistry
19.
BMC Genomics ; 20(1): 243, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30909884

ABSTRACT

BACKGROUND: Fungi are an attractive source of nutrients for predators. As part of their defense, some fungi are able to induce the production of anti-predator protein toxins in response to predation. A previous study on the interaction of the model mushroom Coprinopsis cinerea by the fungivorous nematode Aphelenchus avenae on agar plates has shown that the this fungal defense response is most pronounced in the part of the mycelium that is in direct contact with the nematode. Hence, we hypothesized that, for a comprehensive characterization of this defense response, an experimental setup that maximizes the zone of direct interaction between the fungal mycelium and the nematode, was needed. RESULTS: In this study, we conducted a transcriptome analysis of C. cinerea vegetative mycelium upon challenge with A. avenae using a tailor-made microfluidic device. The device was designed such that the interaction between the fungus and the nematode was confined to a specific area and that the mycelium could be retrieved from this area for analysis. We took samples from the confrontation area after different time periods and extracted and sequenced the poly(A)+ RNA thereof. The identification of 1229 differentially expressed genes (DEGs) shows that this setup profoundly improved sensitivity over co-cultivation on agar plates where only 37 DEGs had been identified. The product of one of the most highly upregulated genes shows structural homology to bacterial pore-forming toxins, and revealed strong toxicity to various bacterivorous nematodes. In addition, bacteria associated with the fungivorous nematode A. avenae were profiled with 16S rRNA deep sequencing. Similar to the bacterivorous and plant-feeding nematodes, Proteobacteria and Bacteroidetes were the most dominant phyla in A. avenae. CONCLUSIONS: The use of a novel experimental setup for the investigation of the defense response of a fungal mycelium to predation by fungivorous nematodes resulted in the identification of a comprehensive set of DEGs and the discovery of a novel type of fungal defense protein against nematodes. The bacteria found to be associated with the fungivorous nematode are a possible explanation for the induction of some antibacterial defense proteins upon nematode challenge.


Subject(s)
Agaricales/immunology , Fungal Proteins/genetics , Microfluidic Analytical Techniques/methods , Nematoda/pathogenicity , Sequence Analysis, RNA/methods , Agaricales/genetics , Animals , Bacteroides/genetics , Bacteroides/isolation & purification , Fungal Proteins/pharmacology , Gene Expression Profiling/methods , Gene Expression Regulation, Fungal , Nematoda/drug effects , Nematoda/microbiology , Phylogeny , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics
20.
Curr Biol ; 29(2): 217-228.e4, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30612903

ABSTRACT

Intercellular distribution of nutrients and coordination of responses to internal and external cues via endogenous signaling molecules are hallmarks of multicellular organisms. Vegetative mycelia of multicellular fungi are syncytial networks of interconnected hyphae resulting from hyphal tip growth, branching, and fusion. Such mycelia can reach considerable dimensions and, thus, different parts can be exposed to quite different environmental conditions. Our knowledge about the mechanisms by which fungal mycelia can adjust nutrient gradients or coordinate their defense response to fungivores is scarce, in part due to limitations in technologies currently available for examining different parts of a mycelium over longer time periods at the microscopic level. Here, we combined a tailor-made microfluidic platform with time-lapse fluorescence microscopy to visualize the dynamic response of the vegetative mycelium of a basidiomycete to two different stimuli. The microfluidic platform allows simultaneous monitoring at both the colony and single-hypha level. We followed the dynamics of the distribution of a locally administered nutrient analog and the defense response to spatially confined predation by a fungivorous nematode. Although both responses of the mycelium were constrained locally, we observed long-distance propagation for both the nutrient analog and defense response in a subset of hyphae. This propagation along hyphae occurred in both acropetal and basipetal directions and, intriguingly, the direction was found to alternate every 3 hr in an individual hypha. These results suggest that multicellular fungi have, as of yet, undescribed mechanisms to coordinate the distribution of nutrients and their behavioral response upon attack by fungivores.


Subject(s)
Agaricales/physiology , Food Chain , Hyphae/physiology , Tylenchida/physiology , Animals , Antibiosis , Microfluidic Analytical Techniques , Microscopy, Fluorescence , Nutrients/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...