Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Cell Rep ; 40(7): 111182, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977494

ABSTRACT

Approximately 20% of acute myeloid leukemia (AML) patients carry mutations in IDH1 or IDH2 that result in over-production of the oncometabolite D-2-hydroxyglutarate (2-HG). Small molecule inhibitors that block 2-HG synthesis can induce complete morphological remission; however, almost all patients eventually acquire drug resistance and relapse. Using a multi-allelic mouse model of IDH1-mutant AML, we demonstrate that the clinical IDH1 inhibitor AG-120 (ivosidenib) exerts cell-type-dependent effects on leukemic cells, promoting delayed disease regression. Although single-agent AG-120 treatment does not fully eradicate the disease, it increases cycling of rare leukemia stem cells and triggers transcriptional upregulation of the pyrimidine salvage pathway. Accordingly, AG-120 sensitizes IDH1-mutant AML to azacitidine, with the combination of AG-120 and azacitidine showing vastly improved efficacy in vivo. Our data highlight the impact of non-genetic heterogeneity on treatment response and provide a mechanistic rationale for the observed combinatorial effect of AG-120 and azacitidine in patients.


Subject(s)
Isocitrate Dehydrogenase , Leukemia, Myeloid, Acute , Animals , Azacitidine/pharmacology , Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Mutation/genetics , Stem Cells/metabolism
2.
EMBO Mol Med ; 14(7): e15203, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35514210

ABSTRACT

The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate-limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes. Moreover, we find that ablation of CDK5, a gene that is recurrently deleted in AML and related disorders, increases the sensitivity of AML cells to DHODHi. Our studies provide important molecular insights and identify a potential biomarker for an emerging strategy to target AML.


Subject(s)
Leukemia, Myeloid, Acute , Oxidoreductases Acting on CH-CH Group Donors , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/pharmacology , Humans , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Biosynthesis , Pyrimidines/pharmacology
3.
Cancer Discov ; 12(6): 1560-1579, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35311997

ABSTRACT

Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC). In models of acute myeloid leukemia (AML), leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor (HDACi) panobinostat required activation of the type I interferon (IFN) pathway. Plasmacytoid dendritic cells (pDC) produced type I IFN after panobinostat treatment, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated induction of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, whereas combined treatment with panobinostat and IFNα improved outcomes in preclinical models. These discoveries offer a new therapeutic approach for AML and demonstrate that epigenetic rewiring of pDCs enhances antitumor immunity, opening the possibility of exploiting this approach for immunotherapies. SIGNIFICANCE: We demonstrate that HDACis induce terminal differentiation of AML through epigenetic remodeling of pDCs, resulting in production of type I IFN that is important for the therapeutic effects of HDACis. The study demonstrates the important functional interplay between the immune system and leukemias in response to HDAC inhibition. This article is highlighted in the In This Issue feature, p. 1397.


Subject(s)
Leukemia, Myeloid, Acute , Cell Differentiation , Dendritic Cells , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Panobinostat/pharmacology
5.
Nat Struct Mol Biol ; 23(7): 673-81, 2016 07.
Article in English | MEDLINE | ID: mdl-27294782

ABSTRACT

Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis.


Subject(s)
Gene Expression Regulation, Leukemic , Histones/genetics , Leukemia, Biphenotypic, Acute/genetics , Methyltransferases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Acetylation , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Cycle Proteins , Cell Proliferation , Chromatin/chemistry , Chromatin/metabolism , Clinical Trials as Topic , Disease Models, Animal , Female , Histone-Lysine N-Methyltransferase , Histones/metabolism , Humans , Leukemia, Biphenotypic, Acute/metabolism , Leukemia, Biphenotypic, Acute/pathology , Male , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mice , Mice, Inbred C57BL , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Primary Cell Culture , Protein Binding , Proteomics/methods , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic
6.
Blood ; 126(21): 2392-403, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26447190

ABSTRACT

Histone deacetylase (HDAC) inhibitors (HDACis) have demonstrated activity in hematological and solid malignancies. Vorinostat, romidepsin, belinostat, and panobinostat are Food and Drug Administration-approved for hematological malignancies and inhibit class II and/or class I HDACs, including HDAC1, 2, 3, and 6. We combined genetic and pharmacological approaches to investigate whether suppression of individual or multiple Hdacs phenocopied broad-acting HDACis in 3 genetically distinct leukemias and lymphomas. Individual Hdacs were depleted in murine acute myeloid leukemias (MLL-AF9;Nras(G12D); PML-RARα acute promyelocytic leukemia [APL] cells) and Eµ-Myc lymphoma in vitro and in vivo. Strikingly, Hdac3-depleted cells were selected against in competitive assays for all 3 tumor types. Decreased proliferation following Hdac3 knockdown was not prevented by BCL-2 overexpression, caspase inhibition, or knockout of Cdkn1a in Eµ-Myc lymphoma, and depletion of Hdac3 in vivo significantly reduced tumor burden. Interestingly, APL cells depleted of Hdac3 demonstrated a more differentiated phenotype. Consistent with these genetic studies, the HDAC3 inhibitor RGFP966 reduced proliferation of Eµ-Myc lymphoma and induced differentiation in APL. Genetic codepletion of Hdac1 with Hdac2 was pro-apoptotic in Eµ-Myc lymphoma in vitro and in vivo and was phenocopied by the HDAC1/2-specific agent RGFP233. This study demonstrates the importance of HDAC3 for the proliferation of leukemia and lymphoma cells, suggesting that HDAC3-selective inhibitors could prove useful for the treatment of hematological malignancies. Moreover, our results demonstrate that codepletion of Hdac1 with Hdac2 mediates a robust pro-apoptotic response. Our integrated genetic and pharmacological approach provides important insights into the individual or combinations of HDACs that could be prioritized for targeting in a range of hematological malignancies.


Subject(s)
Histone Deacetylases/metabolism , Leukemia, Promyelocytic, Acute/enzymology , Leukemia, Promyelocytic, Acute/genetics , Lymphoma/enzymology , Lymphoma/genetics , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Lymphoma/drug therapy , Lymphoma/pathology , Mice , NIH 3T3 Cells , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
7.
Nature ; 525(7570): 538-42, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26367796

ABSTRACT

Bromodomain and extra terminal protein (BET) inhibitors are first-in-class targeted therapies that deliver a new therapeutic opportunity by directly targeting bromodomain proteins that bind acetylated chromatin marks. Early clinical trials have shown promise, especially in acute myeloid leukaemia, and therefore the evaluation of resistance mechanisms is crucial to optimize the clinical efficacy of these drugs. Here we use primary mouse haematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 to generate several single-cell clones that demonstrate resistance, in vitro and in vivo, to the prototypical BET inhibitor, I-BET. Resistance to I-BET confers cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance is not mediated through increased drug efflux or metabolism, but is shown to emerge from leukaemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 is globally reduced in resistant cells, whereas the expression of key target genes such as Myc remains unaltered, highlighting the existence of alternative mechanisms to regulate transcription. We demonstrate that resistance to BET inhibitors, in human and mouse leukaemia cells, is in part a consequence of increased Wnt/ß-catenin signalling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Together, these findings provide new insights into the biology of acute myeloid leukaemia, highlight potential therapeutic limitations of BET inhibitors, and identify strategies that may enhance the clinical utility of these unique targeted therapies.


Subject(s)
Benzodiazepines/pharmacology , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Animals , Azepines/pharmacology , Cell Cycle Proteins , Cell Line, Tumor , Cells, Cultured , Chromatin/metabolism , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Molecular Targeted Therapy , Neoplastic Stem Cells/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Triazoles/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
8.
Clin Epigenetics ; 7: 2, 2015.
Article in English | MEDLINE | ID: mdl-25628765

ABSTRACT

BACKGROUND: One of the most frequently found abnormalities in acute myeloid leukemia (AML) is the t(8;21)(q22;q22) translocation, which is seen in around 15% of patients. This translocation results in the production of the AML1/ETO (A/E) fusion protein and commonly involves cooperating activating mutations of RAS. AE9a encodes a C-terminally truncated A/E protein of 575 amino acids that retains the ability to recruit histone deacetylases (HDACs). Expression of AE9a leads to rapid development of leukemia in experimental mouse systems. We have recently shown that treatment of mice bearing A/E9a;Nras (G12D) tumors with the histone deacetylase inhibitor (HDACi) panobinostat leads to degradation of the A/E9a fusion protein, cell cycle arrest, differentiation of AML blasts into mature granulocytes and prolonged survival. Herein, we sought to enhance this therapeutic effect. FINDINGS: Combined treatment of mice bearing A/E9a;Nras (G12D) leukemias with panobinostat and arsenic trioxide (ATO) resulted in a significant survival advantage compared to mice treated with either agent alone. Moreover, some of the mice treated with the panobinostat/ATO combination showed complete tumor responses and remained in remission for over 220 days. Panobinostat caused differentiation of A/E9a;Nras (G12D) cells while ATO induced apoptosis of the leukemic cells, an effect that was enhanced following co-treatment with panobinostat. CONCLUSIONS: Our results indicate that leukemic blast differentiation mediated by panobinostat combined with induction of apoptosis by ATO could be therapeutically beneficial and should be considered for patients with t(8;21) AML.

9.
Blood ; 123(9): 1341-52, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24415537

ABSTRACT

Epigenetic modifying enzymes such as histone deacetylases (HDACs), p300, and PRMT1 are recruited by AML1/ETO, the pathogenic protein for t(8;21) acute myeloid leukemia (AML), providing a strong molecular rationale for targeting these enzymes to treat this disease. Although early phase clinical assessment indicated that treatment with HDAC inhibitors (HDACis) may be effective in t(8;21) AML patients, rigorous preclinical studies to identify the molecular and biological events that may determine therapeutic responses have not been performed. Using an AML mouse model driven by expression of AML1/ETO9a (A/E9a), we demonstrated that treatment of mice bearing t(8;21) AML with the HDACi panobinostat caused a robust antileukemic response that did not require functional p53 nor activation of conventional apoptotic pathways. Panobinostat triggered terminal myeloid differentiation via proteasomal degradation of A/E9a. Importantly, conditional A/E9a deletion phenocopied the effects of panobinostat and other HDACis, indicating that destabilization of A/E9a is critical for the antileukemic activity of these agents.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Differentiation/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Indoles/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Disease Models, Animal , Embryo, Mammalian , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oncogene Proteins, Fusion/genetics , Panobinostat , RUNX1 Translocation Partner 1 Protein , Translocation, Genetic
10.
Cancer Discov ; 3(1): 82-95, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23242809

ABSTRACT

UNLABELLED: MYC deregulation is common in human cancer. IG-MYC translocations that are modeled in Eµ-Myc mice occur in almost all cases of Burkitt lymphoma as well as in other B-cell lymphoproliferative disorders. Deregulated expression of MYC results in increased mTOR complex 1 (mTORC1) signaling. As tumors with mTORC1 activation are sensitive to mTORC1 inhibition, we used everolimus, a potent and specific mTORC1 inhibitor, to test the requirement for mTORC1 in the initiation and maintenance of Eµ-Myc lymphoma. Everolimus selectively cleared premalignant B cells from the bone marrow and spleen, restored a normal pattern of B-cell differentiation, and strongly protected against lymphoma development. Established Eµ-Myc lymphoma also regressed after everolimus therapy. Therapeutic response correlated with a cellular senescence phenotype and induction of p53 activity. Therefore, mTORC1-dependent evasion of senescence is critical for cellular transformation and tumor maintenance by MYC in B lymphocytes. SIGNIFICANCE: This work provides novel insights into the requirements for MYC-induced oncogenesis by showing that mTORC1 activity is necessary to bypass senescence during transformation of B lymphocytes. Furthermore, tumor eradication through senescence elicited by targeted inhibition of mTORC1 identifies a previously uncharacterized mechanism responsible for significant anticancer activity of rapamycin analogues and serves as proof-of-concept that senescence can be harnessed for therapeutic benefit


Subject(s)
Antineoplastic Agents/therapeutic use , Lymphoma/drug therapy , Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/metabolism , Sirolimus/analogs & derivatives , Animals , B-Lymphocytes/cytology , B-Lymphocytes/physiology , Cell Differentiation/drug effects , Cellular Senescence , Everolimus , Lymphoma/metabolism , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Transgenic , Multiprotein Complexes , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases
11.
Proc Natl Acad Sci U S A ; 105(32): 11317-22, 2008 Aug 12.
Article in English | MEDLINE | ID: mdl-18685088

ABSTRACT

Histone deacetylase inhibitors (HDACi) and agents such as recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL receptor (TRAIL-R) antibodies are anticancer agents that have shown promise in preclinical settings and in early phase clinical trials as monotherapies. Although HDACi and activators of the TRAIL pathway have different molecular targets and mechanisms of action, they share the ability to induce tumor cell-selective apoptosis. The ability of HDACi to induce expression of TRAIL-R death receptors 4 and 5 (DR4/DR5), and induce tumor cell death via the intrinsic apoptotic pathway provides a molecular rationale to combine these agents with activators of the TRAIL pathway that activate the alternative (death receptor) apoptotic pathway. Herein, we demonstrate that the HDACi vorinostat synergizes with the mouse DR5-specific monoclonal antibody MD5-1 to induce rapid and robust tumor cell apoptosis in vitro and in vivo. Importantly, using a preclinical mouse breast cancer model, we show that the combination of vorinostat and MD5-1 is safe and induces regression of established tumors, whereas single agent treatment had little or no effect. Functional analyses revealed that rather than mediating enhanced tumor cell apoptosis via the simultaneous activation of the intrinsic and extrinsic apoptotic pathways, vorinostat augmented MD5-1-induced apoptosis concomitant with down-regulation of the intracellular apoptosis inhibitor cellular-FLIP (c-FLIP). These data demonstrate that combination therapies involving HDACi and activators of the TRAIL pathway can be efficacious for the treatment of cancer in experimental mouse models.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Histone Deacetylase Inhibitors , Mammary Neoplasms, Experimental/drug therapy , Neoplasm Proteins/agonists , Neoplasm Proteins/antagonists & inhibitors , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Animals , Antibodies, Monoclonal/pharmacology , CASP8 and FADD-Like Apoptosis Regulating Protein/biosynthesis , Cell Line, Tumor , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/pharmacology , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred BALB C , Mice, SCID , Neoplasm Proteins/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Vorinostat
12.
Breast Cancer Res ; 8(2): R20, 2006.
Article in English | MEDLINE | ID: mdl-16608535

ABSTRACT

INTRODUCTION: Studies in xenograft models and experimental models of metastasis have implicated several beta3 integrin-expressing cell populations, including endothelium, platelets and osteoclasts, in breast tumor progression. Since orthotopic human xenograft models of breast cancer are poorly metastatic to bone and experimental models bypass the formation of a primary tumor, however, the precise contribution of tumor-specific alphavbeta3 to the spontaneous metastasis of breast tumors from the mammary gland to bone remains unclear. METHODS: We used a syngeneic orthotopic model of spontaneous breast cancer metastasis to test whether exogenous expression of alphavbeta3 in a mammary carcinoma line (66cl4) that metastasizes to the lung, but not to bone, was sufficient to promote its spontaneous metastasis to bone from the mammary gland. The tumor burden in the spine and the lung following inoculation of alphavbeta3-expressing 66cl4 (66cl4beta3) tumor cells or control 66cl4pBabe into the mammary gland was analyzed by real-time quantitative PCR. The ability of these cells to grow and form osteolytic lesions in bone was determined by histology and tartrate-resistant acid phosphatase staining of bone sections following intratibial injection of tumor cells. The adhesive, migratory and invasive properties of 66cl4pBabe and 66cl4beta3 cells were evaluated in standard in vitro assays. RESULTS: The 66cl4beta3 tumors showed a 20-fold increase in metastatic burden in the spine compared with 66cl4pBabe. A similar trend in lung metastasis was observed. alphavbeta3 did not increase the proliferation of 66cl4 cells in vitro or in the mammary gland in vivo. Similarly, alphavbeta3 is not required for the proliferation of 66cl4 cells in bone as both 66cl4pBabe and 66cl4beta3 proliferated to the same extent when injected directly into the tibia. 66cl4beta3 tumor growth in the tibia, however, increased osteoclast recruitment and bone resorption compared with 66cl4 tumors. Moreover, alphavbeta3 increased 66cl4 tumor cell adhesion and alphavbeta3-dependent haptotactic migration towards bone matrix proteins, as well as their chemotactic response to bone-derived soluble factors in vitro. CONCLUSION: These results demonstrate for the first time that tumor-specific alphavbeta3 contributes to spontaneous metastasis of breast tumors to bone and suggest a critical role for this receptor in mediating chemotactic and haptotactic migration towards bone factors.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Integrin alphaVbeta3/physiology , Animals , Bone Neoplasms/pathology , Cell Adhesion , Cell Division , Cell Line , Epithelial Cells/cytology , Epithelial Cells/pathology , Female , Humans , Mammary Glands, Animal/cytology , Mice , Neoplasm Metastasis , Spinal Neoplasms/pathology , Spinal Neoplasms/secondary
13.
Mol Cancer Res ; 3(1): 1-13, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15671244

ABSTRACT

A clinically relevant model of spontaneous breast cancer metastasis to multiple sites, including bone, was characterized and used to identify genes involved in metastatic progression. The metastatic potential of several genetically related tumor lines was assayed using a novel real-time quantitative RT-PCR assay of tumor burden. Based on this assay, the tumor lines were categorized as nonmetastatic (67NR), weakly metastatic to lymph node (168FARN) or lung (66cl4), or highly metastatic to lymph node, lung, and bone (4T1.2 and 4T1.13). In vitro assays that mimic stages of metastasis showed that highly metastatic tumors lines were more adhesive, invasive, and migratory than the less metastatic lines. To identify metastasis-related genes in this model, each metastatic tumor was array profiled against the nonmetastatic 67NR using 15,000 mouse cDNA arrays. A significant proportion of genes relating to the extracellular matrix had elevated expression in highly metastatic tumors. The role of one of these genes, POEM, was further investigated in the model. In situ hybridization showed that POEM expression was specific to the tumor epithelium of highly metastatic tumors. Decreased POEM expression in 4T1.2 tumors significantly inhibited spontaneous metastasis to the lung, bone, and kidney. Taken together, our data support a role for the extracellular matrix in metastatic progression and describe, for the first time, a role for POEM in this process.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic , Animals , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Proliferation , Collagen/chemistry , DNA/metabolism , DNA, Complementary/metabolism , Disease Progression , Drug Combinations , Genome, Human , Green Fluorescent Proteins/metabolism , Humans , In Situ Hybridization , Laminin/chemistry , Lymphatic Metastasis , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neovascularization, Pathologic , Nucleic Acid Hybridization , Proteoglycans/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Rhodamines/pharmacology , Tissue Distribution
14.
Oncogene ; 23(47): 7893-7, 2004 Oct 14.
Article in English | MEDLINE | ID: mdl-15334058

ABSTRACT

Caveolin-1 was identified in a screen for genes involved in breast cancer progression. Caveolin-1 is the major protein component of caveolae, flask-shaped invaginations found in a number of different cell types. Using an orthotopic model of spontaneous breast cancer metastasis, caveolin-1 was found to be expressed in low and non-metastatic primary tumors, but at much lower levels in highly metastatic 4T1.2 and 4T1.13 tumors. Exogenous expression of caveolin-1 at moderate levels in 4T1.2 cells was sufficient to suppress primary tumor growth after inoculation of cells into the mammary gland. Expression of high levels of caveolin-1 also inhibited subsequent metastasis to distant organs. Cells expressing high levels of caveolin-1 showed reduced capacity to invade Matrigel, diminished response to laminin-1 stimulation and decreased metastasis to lung and bone. This study provides the first functional evidence that caveolin-1 regulates primary breast tumor growth and spontaneous metastasis of breast cancer.


Subject(s)
Breast Neoplasms/pathology , Caveolins/physiology , Cell Division/genetics , Animals , Caveolin 1 , Caveolins/genetics , Female , Humans , Mice , Models, Animal , Neoplasm Metastasis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL