Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948797

ABSTRACT

Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3 , but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.

2.
Nat Rev Genet ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724711

ABSTRACT

Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.

3.
Sci Rep ; 13(1): 17473, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838775

ABSTRACT

Notch signaling determines cell fates in mouse intestine. Notch receptors contain multiple epidermal growth factor-like (EGF) repeats modified by O-glycans that regulate Notch signaling. Conditional deletion of protein O-fucosyltransferase 1 (Pofut1) substantially reduces Notch signaling and markedly perturbs lineage development in mouse intestine. However, mice with inactivated Pofut1 are viable, whereas complete elimination of Notch signaling in intestine is lethal. Here we investigate whether residual Notch signaling enabled by EGF-domain-specific O-linked N-acetylglucosamine transferase (Eogt) permits mice conditionally lacking Pofut1 in intestine to survive. Mice globally lacking Eogt alone were grossly unaffected in intestinal development. In contrast, mice lacking both Eogt and Pofut1 died at ~ 28 days after birth with greater loss of body weight, a greater increase in the number of goblet and Paneth cells, and greater downregulation of the Notch target gene Hes1, compared to Pofut1 deletion alone. These data reveal that both O-fucose and O-GlcNAc glycans are fundamental to Notch signaling in the intestine and provide new insights into roles for O-glycans in regulating Notch ligand binding. Finally, EOGT and O-GlcNAc glycans provide residual Notch signaling and support viability in mice lacking Pofut1 in the intestine.


Subject(s)
Epidermal Growth Factor , Receptors, Notch , Animals , Mice , Cell Line , Polysaccharides/metabolism , Receptors, Notch/metabolism , Signal Transduction
4.
Front Immunol ; 14: 1097332, 2023.
Article in English | MEDLINE | ID: mdl-37795096

ABSTRACT

Glycosylation of Notch receptors by O-fucose glycans regulates Notch ligand binding and Notch signaling during hematopoiesis. However, roles in hematopoiesis for other O-glycans that modify Notch receptors have not been determined. Here we show that the EGF domain specific GlcNAc transferase EOGT is required in mice for the optimal production of lymphoid and myeloid cells. The phenotype of Eogt null mice was largely cell-autonomous, and Notch target gene expression was reduced in T cell progenitors. Moreover, EOGT supported residual Notch signaling following conditional deletion of Pofut1 in hematopoietic stem cells (HSC). Eogt : Pofut1 double mutant HSC had more severe defects in bone marrow and in T and B cell development in thymus and spleen, compared to deletion of Pofut1 alone. The combined results show that EOGT and O-GlcNAc glycans are required for optimal hematopoiesis and T and B cell development, and that they act synergistically with POFUT1 and O-fucose glycans to promote Notch signaling in lymphoid and myeloid differentiation.


Subject(s)
Fucose , Receptors, Notch , Mice , Animals , Fucose/metabolism , Receptors, Notch/metabolism , Hematopoiesis , Mice, Knockout , Hematopoietic Stem Cells/metabolism , Polysaccharides/metabolism
6.
J Biol Chem ; 299(12): 105406, 2023 12.
Article in English | MEDLINE | ID: mdl-38270391

ABSTRACT

Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.


Subject(s)
Fucose , Monosaccharide Transport Proteins , Nucleotide Transport Proteins , Animals , Female , Humans , Mice , Pregnancy , Epidermal Growth Factor , Fucose/metabolism , HEK293 Cells , Monosaccharide Transport Proteins/genetics , Neoplasm Proteins , Nucleotide Transport Proteins/genetics , Thrombospondins/metabolism , Mice, Knockout , Receptor, Notch1/metabolism , Signal Transduction
7.
Front Mol Biosci ; 9: 979724, 2022.
Article in English | MEDLINE | ID: mdl-36406268

ABSTRACT

Notch signaling via NOTCH1 stimulated by Delta-like ligand 4 (DLL4) is required for the development of T cells in thymus, and NOTCH2 stimulated by Notch ligand DLL1 is required for the development of marginal zone (MZ) B cells in spleen. Notch signaling also regulates myeloid cell production in bone marrow and is an essential contributor to the generation of early hematopoietic stem cells (HSC). The differentiation program in each of these cellular contexts is optimized by the regulation of Notch signaling strength by O-glycans attached to epidermal growth factor-like (EGF) repeats in the extracellular domain of Notch receptors. There are three major types of O-glycan on NOTCH1 and NOTCH2 - O-fucose, O-glucose and O-GlcNAc. The initiating sugar of each O-glycan is added in the endoplasmic reticulum (ER) by glycosyltransferases POFUT1 (fucose), POGLUT1/2/3 (glucose) or EOGT (GlcNAc), respectively. Additional sugars are added in the Golgi compartment during passage through the secretory pathway to the plasma membrane. Of particular significance for Notch signaling is the addition of GlcNAc to O-fucose on an EGF repeat by the Fringe GlcNAc-transferases LFNG, MFNG or RFNG. Canonical Notch ligands (DLL1, DLL4, JAG1, JAG2) expressed in stromal cells bind to the extracellular domain of Notch receptors expressed in hematopoietic stem cells and myeloid and lymphoid progenitors to activate Notch signaling. Ligand-receptor binding is differentially regulated by the O-glycans on Notch. This review will summarize our understanding of the regulation of Notch signaling in myeloid and lymphoid cell development by specific O-glycans in mice with dysregulated expression of a particular glycosyltransferase and discuss how this may impact immune system development and malignancy in general, and in individuals with a congenital defect in the synthesis of the O-glycans attached to EGF repeats.

8.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36066492

ABSTRACT

Cell surfaces display a wide array of molecules that confer identity. While flow cytometry and cluster of differentiation (CD) markers have revolutionized cell characterization and purification, functionally heterogeneous cellular subtypes remain unresolvable by the CD marker system alone. Using hematopoietic lineages as a paradigm, we leverage the extraordinary molecular diversity of heparan sulfate (HS) glycans to establish cellular "glycotypes" by utilizing a panel of anti-HS single-chain variable fragment antibodies (scFvs). Prospective sorting with anti-HS scFvs identifies functionally distinct glycotypes within heterogeneous pools of mouse and human hematopoietic progenitor cells and enables further stratification of immunophenotypically pure megakaryocyte-erythrocyte progenitors. This stratification correlates with expression of a heptad of HS-related genes that is reflective of the HS epitope recognized by specific anti-HS scFvs. While we show that HS glycotyping provides an orthogonal set of tools for resolution of hematopoietic lineages, we anticipate broad utility of this approach in defining and isolating novel, viable cell types across diverse tissues and species.


Subject(s)
Hematopoiesis , Single-Chain Antibodies , Flow Cytometry , Hematopoiesis/genetics , Hematopoietic Stem Cells , Heparitin Sulfate , Humans , Prospective Studies
9.
J Biol Chem ; 298(7): 102064, 2022 07.
Article in English | MEDLINE | ID: mdl-35623385

ABSTRACT

NOTCH1 is a transmembrane receptor that initiates a cell-cell signaling pathway controlling various cell fate specifications in metazoans. The addition of O-fucose by protein O-fucosyltransferase 1 (POFUT1) to epidermal growth factor-like (EGF) repeats in the NOTCH1 extracellular domain is essential for NOTCH1 function, and modification of O-fucose with GlcNAc by the Fringe family of glycosyltransferases modulates Notch activity. Prior cell-based studies showed that POFUT1 modifies EGF repeats containing the appropriate consensus sequence at high stoichiometry, while Fringe GlcNAc-transferases (LFNG, MFNG, and RFNG) modify O-fucose on only a subset of NOTCH1 EGF repeats. Previous in vivo studies showed that each FNG affects naïve T cell development. To examine Fringe modifications of NOTCH1 at a physiological level, we used mass spectral glycoproteomic methods to analyze O-fucose glycans of endogenous NOTCH1 from activated T cells obtained from mice lacking all Fringe enzymes or expressing only a single FNG. While most O-fucose sites were modified at high stoichiometry, only EGF6, EGF16, EGF26, and EGF27 were extended in WT T cells. Additionally, cell-based assays of NOTCH1 lacking fucose at each of those O-fucose sites revealed small but significant effects of LFNG on Notch-Delta binding in the EGF16 and EGF27 mutants. Finally, in activated T cells expressing only LFNG, MFNG, or RFNG alone, the extension of O-fucose with GlcNAc in the same EGF repeats was diminished, consistent with cooperative interactions when all three Fringes were present. The combined data open the door for the analysis of O-glycans on endogenous NOTCH1 derived from different cell types.


Subject(s)
Epidermal Growth Factor , Fucose , Receptor, Notch1/metabolism , Animals , Epidermal Growth Factor/metabolism , Fucose/metabolism , Glucosyltransferases , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Mice , Polysaccharides/metabolism , Receptors, Notch/metabolism , T-Lymphocytes/metabolism
10.
Biochem Soc Trans ; 50(2): 689-701, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35311893

ABSTRACT

Intestinal homeostasis is key to the maintenance of good health. The small intestine plays important roles in absorption, digestion, hormonal and immune functions. Crypt base columnar (CBC) stem cells residing at the bottom of crypts are nurtured by Paneth cells, and together create the stem cell niche, the foundation of intestinal homeostasis. CBC stem cells replicate to replenish their number, or differentiate into a variety of epithelial cells with specialized functions. Notch signaling is a cell-cell signaling pathway that regulates both the proliferation and differentiation of CBC stem cells. NOTCH1 and NOTCH2 stimulated by canonical Notch ligands DLL1 and DLL4 mediate Notch signaling in the intestine that, in concert with other signaling pathways including the WNT and BMP pathways, determines cell fates. Importantly, interactions between Notch receptors and canonical Notch ligands are regulated by O-glycans linked to Ser/Thr in epidermal growth factor-like (EGF) repeats of the Notch receptor extracellular domain (NECD). The O-glycans attached to NECD are key regulators of the strength of Notch signaling. Imbalances in Notch signaling result in altered cell fate decisions and may lead to cancer in the intestine. In this review, we summarize the impacts of mutations in Notch pathway members on intestinal development and homeostasis, with a focus on the glycosyltransferases that transfer O-glycans to EGF repeats of NOTCH1, NOTCH2, DLL1 and DLL4.


Subject(s)
Epidermal Growth Factor , Receptors, Notch , Intestines , Ligands , Polysaccharides/metabolism , Receptors, Notch/metabolism , Signal Transduction
11.
J Biol Chem ; 295(41): 14053-14064, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32763972

ABSTRACT

The membrane-bound, long form of MGAT4D, termed MGAT4D-L, inhibits MGAT1 activity in transfected cells and reduces the generation of complex N-glycans. MGAT1 is the GlcNAc-transferase that initiates complex and hybrid N-glycan synthesis. We show here that Drosophila MGAT1 was also inhibited by MGAT4D-L in S2 cells. In mammalian cells, expression of MGAT4D-L causes the substrate of MGAT1 (Man5GlcNAc2Asn) to accumulate on glycoproteins, a change that is detected by the lectin Galanthus nivalis agglutinin (GNA). Using GNA binding as an assay for the inhibition of MGAT1 in MGAT4D-L transfectants, we performed site-directed mutagenesis to determine requirements for MGAT1 inhibition. Deletion of 25 amino acids (aa) from the C terminus inactivated MGAT4D-L, but deletion of 20 aa did not. Conversion of the five key amino acids (PSLFQ) to Ala, or deletion of PSLFQ in the context of full-length MGAT4D-L, also inactivated MGAT1 inhibitory activity. Nevertheless, mutant, inactive MGAT4D-L interacted with MGAT1 in co-immuno-precipitation experiments. The PSLFQ sequence also occurs in MGAT4A and MGAT4B GlcNAc-transferases. However, neither inhibited MGAT1 in transfected CHO cells. MGAT4D-L inhibitory activity could be partially transferred by attaching PSLFQ or the 25-aa C terminus of MGAT4D-L to the C terminus of MGAT1. Mutation of each amino acid in PSLFQ to Ala identified both Leu and Phe as independently essential for MGAT4D-L activity. Thus, replacement of either Leu-395 or Phe-396 with Ala led to inactivation of MGAT4D-L inhibitory activity. These findings provide new insights into the mechanism of inhibition of MGAT1 by MGAT4D-L, and for the development of small molecule inhibitors of MGAT1.


Subject(s)
Drosophila Proteins , Enzyme Inhibitors/metabolism , Membrane Proteins , N-Acetylglucosaminyltransferases , Point Mutation , Amino Acid Sequence , Animals , CHO Cells , Cricetulus , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , HL-60 Cells , Humans , Mannose-Binding Lectins/chemistry , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Plant Lectins/chemistry , Polysaccharides/biosynthesis , Polysaccharides/genetics , Protein Binding , Protein Domains , Sequence Deletion
12.
Cell Chem Biol ; 27(9): 1140-1150.e4, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32649905

ABSTRACT

Wnt/ß-catenin signaling regulates critical, context-dependent transcription in numerous physiological events. Among the well-documented mechanisms affecting Wnt/ß-catenin activity, modification of N-glycans by L-fucose is the newest and the least understood. Using a combination of Chinese hamster ovary cell mutants with different fucosylation levels and cell-surface fucose editing (in situ fucosylation [ISF]), we report that α(1-3)-fucosylation of N-acetylglucosamine (GlcNAc) in the Galß(1-4)-GlcNAc sequences of complex N-glycans modulates Wnt/ß-catenin activity by regulating the endocytosis of low-density lipoprotein receptor-related protein 6 (LRP6). Pulse-chase experiments reveal that ISF elevates endocytosis of lipid-raft-localized LRP6, leading to the suppression of Wnt/ß-catenin signaling. Remarkably, Wnt activity decreased by ISF is fully reversed by the exogenously added fucose. The combined data show that in situ cell-surface fucosylation can be exploited to regulate a specific signaling pathway via endocytosis promoted by a fucose-binding protein, thereby linking glycosylation of a receptor with its intracellular signaling.


Subject(s)
Endocytosis , Fucose/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Wnt Signaling Pathway , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Embryo, Nonmammalian/metabolism , Endocytosis/drug effects , Fucose/pharmacology , Glycosylation , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Membrane Microdomains/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/metabolism , Zebrafish/growth & development , Zebrafish/metabolism , beta Catenin/metabolism
13.
Front Cell Dev Biol ; 8: 212, 2020.
Article in English | MEDLINE | ID: mdl-32300591

ABSTRACT

MGAT1 and complex N-glycans are required for spermatogenesis and fertility. Conditional deletion of Mgat1 in spermatogonia (Mgat1 cKO) causes reduced ERK1/2 signaling and the formation of multinucleated germ cells (MNC). Here we show that glycomics analysis of N-glycans released from fixed testis sections and analyzed by MALDI imaging mass spectrometry (MALDI-IMS) revealed a loss of MGAT1 activity in all germ cells based on the accumulation of the oligomannosyl substrate of MGAT1. To determine in which type of germ cell MGAT1 is essential for spermatogenesis, we generated Mgat1 cKO males that also expressed a Mgat1-HA transgene under the control of a germ cell-specific promoter - Stra8 for spermatogonia, Ldhc for spermatocytes and Prm1 for spermatids. Males expressing each Mgat1-HA transgene were fertile, and both males and females transmitted each transgene. When Stra8-Mgat1-HA was expressed in Mgat1 cKO males, spermatogenesis was rescued based on the morphology of testis sections, the complement of N-glycans on basigin, lectin histochemistry, MALDI-IMS, and fertility. By contrast, neither Ldhc-Mgat1-HA expressed in spermatocytes, nor the Prm1-Mgat1-HA transgene expressed in spermatids rescued spermatogenesis or fertility in Mgat1 cKO males. Therefore, MGAT1 must be expressed in spermatogonia for spermatogenesis to proceed normally.

14.
Sci Rep ; 10(1): 2135, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034218

ABSTRACT

Male germ cells are sensitive to heat stress and testes must be maintained outside the body for optimal fertility. However, no germ cell intrinsic mechanism that protects from heat has been reported. Here, we identify the germ cell specific Golgi glycoprotein MGAT4D as a protector of male germ cells from heat stress. Mgat4d is highly expressed in spermatocytes and spermatids. Unexpectedly, when the Mgat4d gene was inactivated globally or conditionally in spermatogonia, or mis-expressed in spermatogonia, spermatocytes or spermatids, neither spermatogenesis nor fertility were affected. On the other hand, when males were subjected to mild heat stress of the testis (43 °C for 25 min), germ cells with inactivated Mgat4d were markedly more sensitive to the effects of heat stress, and transgenic mice expressing Mgat4d were partially protected from heat stress. Germ cells lacking Mgat4d generally mounted a similar heat shock response to control germ cells, but could not maintain that response. Several pathways activated by heat stress in wild type were induced to a lesser extent in Mgat4d[-/-] heat-stressed germ cells (NFκB response, TNF and TGFß signaling, Hif1α and Myc genes). Thus, the Golgi glycoprotein MGAT4D is a novel, intrinsic protector of male germ cells from heat stress.


Subject(s)
Germ Cells/metabolism , Glycoproteins/metabolism , Golgi Apparatus/metabolism , Heat Stress Disorders/metabolism , Heat-Shock Response/physiology , Membrane Proteins/metabolism , Testis/metabolism , Animals , Hot Temperature , Male , Mice , Mice, Inbred C57BL , Spermatids/metabolism , Spermatocytes/metabolism , Spermatogenesis/physiology , Spermatogonia/metabolism , Spermatozoa/metabolism
15.
BMC Dev Biol ; 19(1): 19, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31590629

ABSTRACT

BACKGROUND: Mouse NOTCH1 carries a highly conserved O-fucose glycan at Thr466 in epidermal growth factor-like repeat 12 (EGF12) of the extracellular domain. O-Fucose at this site has been shown by X-ray crystallography to be recognized by both DLL4 and JAG1 Notch ligands. We previously showed that a Notch1 Thr466Ala mutant exhibits very little ligand-induced NOTCH1 signaling in a reporter assay, whereas a Thr466Ser mutation enables the transfer of O-fucose and reverts the NOTCH1 signaling defect. We subsequently generated a mutant mouse with the Thr466Ala mutation termed Notch1[12f](Notch1tm2Pst). Surprisingly, homozygous Notch1[12f/12f] mutants on a mixed background were viable and fertile. RESULTS: We now report that after backcrossing to C57BL/6 J mice for 11-15 generations, few homozygous Notch1[12f/12f] embryos were born. Timed mating showed that embryonic lethality occurred by embryonic day (E) ~E11.5, somewhat delayed compared to mice lacking Notch1 or Pofut1 (the O-fucosyltransferase that adds O-fucose to Notch receptors), which die at ~E9.5. The phenotype of C57BL/6 J Notch1[12f/12f] embryos was milder than mutants affected by loss of a canonical Notch pathway member, but disorganized vasculogenesis in the yolk sac, delayed somitogenesis and development were characteristic. In situ hybridization of Notch target genes Uncx4.1 and Dll3 or western blot analysis of NOTCH1 cleavage did not reveal significant differences at E9.5. However, qRT-PCR of head cDNA showed increased expression of Dll3, Uncx4.1 and Notch1 in E9.5 Notch1[12f/12f] embryos. Sequencing of cDNA from Notch1[12f/12f] embryo heads and Southern analysis showed that the Notch1[12f] locus was intact following backcrossing. We therefore looked for evidence of modifying gene(s) by crossing C57BL/6 J Notch1 [12f/+] mice to 129S2/SvPasCrl mice. Intercrosses of the F1 progeny gave viable F2 Notch1[12f/12f] mice. CONCLUSION: We conclude that the 129S2/SvPasCrl genome contains a dominant modifying gene that rescues the functions of NOTCH1[12f] in signaling. Identification of the modifying gene has the potential to illuminate novel factor(s) that promote Notch signaling when an O-fucose glycan is absent from EGF12 of NOTCH1.


Subject(s)
Amino Acid Substitution , Embryo, Mammalian/anatomy & histology , Genes, Modifier , Inbreeding/methods , Receptor, Notch1/genetics , Alanine/metabolism , Animals , Embryonic Development , Female , Fucose/metabolism , Genome , Homozygote , Male , Mice , Mice, Inbred C57BL , Phenotype , Protein Domains , Receptor, Notch1/chemistry , Receptor, Notch1/metabolism , Threonine/metabolism
16.
Front Cell Dev Biol ; 7: 98, 2019.
Article in English | MEDLINE | ID: mdl-31231650

ABSTRACT

Glycosylation of proteins by N- and O-glycans or glycosaminoglycans (GAGs) mostly begins in the endoplasmic reticulum and is further orchestrated in the Golgi compartment via the action of >100 glycosyltransferases that reside in this complex organelle. The synthesis of glycolipids occurs in the Golgi, also by resident glycosyltransferases. A defect in the glycosylation machinery may impair the functions of glycoproteins and other glycosylated molecules, and lead to a congenital disorder of glycosylation (CDG). Spermatogenesis in the male and oogenesis in the female are tightly regulated differentiation events leading to the production of functional gametes. Insights into roles for glycans in gamete production have been obtained from mutant mice following deletion or inactivation of genes that encode a glycosylation activity. In this review, we will summarize the effects of altering the synthesis of N-glycans, O-glycans, proteoglycans, glycophosphatidylinositol (GPI) anchored proteins, and glycolipids during gametogenesis in the mouse. Glycosylation genes whose deletion causes embryonic lethality have been investigated following conditional deletion using various Cre recombinase transgenes with a cell-type specific promoter. The potential effects of mutations in corresponding glycosylation genes of humans will be discussed in relation to consequences to fertility and potential for use in contraception.

17.
Glycobiology ; 29(9): 620-624, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31184695

ABSTRACT

The Symbol Nomenclature for Glycans (SNFG) is a community-curated standard for the depiction of monosaccharides and complex glycans using various colored-coded, geometric shapes, along with defined text additions. It is hosted by the National Center for Biotechnology Information (NCBI) at the NCBI-Glycans Page (www.ncbi.nlm.nih.gov/glycans/snfg.html). Several changes have been made to the SNFG page in the past year to update the rules for depicting glycans using the SNFG, to include more examples of use, particularly for non-mammalian organisms, and to provide guidelines for the depiction of ambiguous glycan structures. This Glycoforum article summarizes these recent changes.


Subject(s)
National Library of Medicine (U.S.)/organization & administration , Polysaccharides/chemistry , Terminology as Topic , Animals , Internet , Polysaccharides/classification , United States
18.
FEBS Lett ; 592(23): 3819-3834, 2018 12.
Article in English | MEDLINE | ID: mdl-30207383

ABSTRACT

Notch signalling regulates a plethora of developmental processes and is also essential for the maintenance of tissue homeostasis in adults. Therefore, fine-tuning of Notch signalling strength needs to be tightly regulated. Of key importance for the regulation of Notch signalling are O-fucose, O-GlcNAc and O-glucose glycans attached to the extracellular domain of Notch receptors. The EGF repeats of the Notch receptor extracellular domain harbour consensus sites for addition of the different types of O-glycan to Ser or Thr, which takes place in the endoplasmic reticulum. Studies from Drosophila to mammals have demonstrated the multifaceted roles of O-glycosylation in regulating Notch signalling. O-glycosylation modulates different aspects of Notch signalling including recognition by Notch ligands, the strength of ligand binding, Notch receptor trafficking, stability and activation at the cell surface. Defects in O-glycosylation of Notch receptors give rise to pathologies in humans. This Review summarizes the nature of the O-glycans on Notch receptors and their differential effects on Notch signalling.


Subject(s)
Fucose/metabolism , Glucose/metabolism , Polysaccharides/metabolism , Signal Transduction , Animals , Endoplasmic Reticulum/metabolism , Glycosylation , Humans , Models, Biological , Receptors, Notch/metabolism
19.
Sci Rep ; 8(1): 2022, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386567

ABSTRACT

Mechanisms that regulate spermatogenesis in mice are important to define as they often apply to fertility in man. We previously showed that conditional deletion of the mouse Mgat1 gene (Mgat1 cKO) in spermatogonia causes a germ-cell autonomous defect leading to infertility. MGAT1 is the N-acetylglucosaminyltransferase (GlcNAcT-I) that initiates the synthesis of complex N-glycans. Mechanistic bases of MGAT1 loss were investigated in germ cells from 22- and 23-day males, before any changes in germ cell morphology were apparent. Gene expression changes induced by deletion of Mgat1 were determined using the Affymetrix gene chip Mouse Mogene 2.0 ST array, and relationships were investigated by bioinformatics including Gene Ontology (GO), Ingenuity Pathway Analysis (IPA), and Gene Set Enrichment Analysis (GSEA). The loss of complex N-glycans promoted the premature up-regulation of genes normally expressed later in spermatogenesis and spermiogenesis, and IPA and GSEA implicated ERK signaling. EGFR and PDGFRA transcripts and ERK1/2 signaling were reduced in 22-day Mgat1 cKO germ cells. Basigin, a germ cell target of MGAT1, activated ERK1/2 in CHO cells, but not in a Lec1 CHO mutant that lacks MGAT1 and complex N-glycans. Thus, MGAT1 is required to regulate ERK1/2 signaling during spermatogenesis, potentially via different mechanisms.


Subject(s)
Acyltransferases/metabolism , MAP Kinase Signaling System , Polysaccharides/metabolism , Spermatogenesis , Spermatozoa/metabolism , Acyltransferases/genetics , Animals , Basigin/genetics , Basigin/metabolism , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , ErbB Receptors/genetics , ErbB Receptors/metabolism , Male , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , N-Acetylglucosaminyltransferases , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Spermatozoa/cytology
20.
Nat Chem Biol ; 14(1): 65-71, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29176671

ABSTRACT

Notch is a cell-surface receptor that controls cell-fate decisions and is regulated by O-glycans attached to epidermal growth factor-like (EGF) repeats in its extracellular domain. Protein O-fucosyltransferase 1 (Pofut1) modifies EGF repeats with O-fucose and is essential for Notch signaling. Constitutive activation of Notch signaling has been associated with a variety of human malignancies. Therefore, tools that inhibit Notch activity are being developed as cancer therapeutics. To this end, we screened L-fucose analogs for their effects on Notch signaling. Two analogs, 6-alkynyl and 6-alkenyl fucose, were substrates of Pofut1 and were incorporated directly into Notch EGF repeats in cells. Both analogs were potent inhibitors of binding to and activation of Notch1 by Notch ligands Dll1 and Dll4, but not by Jag1. Mutagenesis and modeling studies suggest that incorporation of the analogs into EGF8 of Notch1 markedly reduces the ability of Delta ligands to bind and activate Notch1.


Subject(s)
EGF Family of Proteins/metabolism , Fucose/analogs & derivatives , Fucose/pharmacology , Fucosyltransferases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptors, Notch/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Fucose/chemistry , Fucose/genetics , Fucosyltransferases/genetics , HEK293 Cells , Humans , Ligands , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...