Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 19(5): e0294829, 2024.
Article in English | MEDLINE | ID: mdl-38753718

ABSTRACT

In North America, a comparatively small number of Fraxinus (ash) cultivars were planted in large numbers in both urban and rural environments across the entire range of Fraxinus pennsylvanica Marsh (green ash) over the last 80 years. Undetected cultivar gene flow, if extensive, could significantly lower genetic diversity within populations, suppress differentiation between populations, generate interspecific admixture not driven by long-standing natural processes, and affect the impact of abiotic and biotic threats. In this investigation we generated the first range-wide genetic assessment of F. pennsylvanica to detect the extent of cultivar gene flow into natural stands. We used 16 EST-SSR markers to genotype 48 naturally regenerated populations of F. pennsylvanica distributed across the native range (1291 trees), 19 F. pennsylvanica cultivars, and one F. americana L. (white ash) cultivar to detect cultivar propagule dispersal into these populations. We detected first generation cultivar parentage with high confidence in 171 individuals in 34 of the 48 populations and extensive cultivar parentage (23-50%) in eight populations. The incidence of cultivar parentage was negatively associated with allele richness (R2 = 0.151, p = 0.006). The evidence for a locally high frequency of cultivar propagule dispersal and the interspecific admixture in eastern populations will inform Fraxinus gene pool conservation strategies and guide the selection of individuals for breeding programs focused on increasing resistance to the emerald ash borer (Agrilus planipennis Fairmaire), an existential threat to the Fraxinus species of North America.


Subject(s)
Alleles , Fraxinus , Gene Flow , Genetic Variation , Fraxinus/genetics , Genotype , Microsatellite Repeats/genetics
3.
Mol Cell Endocrinol ; 383(1-2): 32-7, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24316376

ABSTRACT

NELF, a protein identified in migratory GnRH neurons, is predominantly nuclear and alternatively spliced. However, specific NELF splice variants expressed in immortalized GnRH neuronal cell lines from mouse and human are not known. RNA from migratory (GN11 and NLT) and postmigratory (GT1-7) cells in mouse, and (FNCB4-hTERT) cells in human was subjected to RT-PCR. RT-PCR products were cloned, electrophoresed on denaturing gradient gels and sequenced. In addition, quantitative RT-PCR was performed using variant-specific primers. Western blot and immunofluorescence using confocal microscopy were performed for selected variants. Nelf variant 2 (v2), which contains a nuclear localization signal (NLS), was the predominant variant in all mouse and human GnRH neurons. Variants without a NLS (v3 in mouse; v4 in human) were identified. In mouse, v2 protein expression was nuclear, while v3 was non-nuclear. In mouse GnRH neurons, six Nelf splice variant transcripts were identified, including three previously unreported variants. In human, four NELF variant transcripts were observed. In both mouse and human, nuclear and non-nuclear variant transcript and protein were identified, explaining variable NELF cellular localization.


Subject(s)
Gene Expression Regulation , Neurons/metabolism , RNA, Messenger/genetics , Transcription Factors/genetics , Alternative Splicing , Animals , Cell Line, Transformed , Cell Movement , Cell Nucleus/metabolism , Gonadotropin-Releasing Hormone/metabolism , Humans , Mice , Neurons/cytology , Nuclear Localization Signals , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Signal Transduction , Species Specificity , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL