Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Phys ; 49(1): 64-72, 2024.
Article in English | MEDLINE | ID: mdl-38828076

ABSTRACT

Purpose: Image registration is a crucial component of the adaptive radiotherapy workflow. This study investigates the accuracy of the deformable image registration (DIR) and contour propagation features of SmartAdapt, an application in the Eclipse treatment planning system (TPS) version 16.1. Materials and Methods: The registration accuracy was validated using the Task Group No. 132 (TG-132) virtual phantom, which features contour evaluation and landmark analysis based on the quantitative criteria recommended in the American Association of Physicists in Medicine TG-132 report. The target registration error, Dice similarity coefficient (DSC), and center of mass displacement were used as quantitative validation metrics. The performance of the contour propagation feature was evaluated using clinical datasets (head and neck, pelvis, and chest) and an additional four-dimensional computed tomography (CT) dataset from TG-132. The primary planning and the second CT images were appropriately registered and deformed. The DSC was used to find the volume overlapping between the deformed contours and the radiation oncologist (RO)-drawn contour. The clinical value of the DIR-generated structure was reviewed and scored by an experienced RO to make a qualitative assessment. Results: The registration accuracy fell within the specified tolerances. SmartAdapt exhibited a reasonably propagated contour for the chest and head-and-neck regions, with DSC values of 0.80 for organs at risk. Misregistration is frequently observed in the pelvic region, which is specified as a low-contrast region. However, 78% of structures required no modification or minor modification, demonstrating good agreement between contour comparison and the qualitative analysis. Conclusions: SmartAdapt has adequate efficiency for image registration and contour propagation for adaptive purposes in various anatomical sites. However, there should be concern about its performance in regions with low contrast and small volumes.

2.
Genes Cells ; 25(11): 718-729, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32939879

ABSTRACT

Ring finger protein 43 (RNF43) is an E3 ubiquitin ligase which is well-known for its role in negative regulation of the Wnt-signaling pathway. However, the function in DNA double-strand break repairs has not been investigated. In this study, we used a lymphoblast cell line, DT40, and mouse embryonic fibroblast as cellular models to study DNA double-strand break (DSB) repairs. For this purpose, we created RNF43 knockout, RNF43-/- DT40 cell line to investigate DSB repairs. We found that deletion of RNF43 does not interfere with cell proliferation. However, after exposure to various types of DNA-damaging agents, RNF43-/- cells become more sensitive to topoisomerase II inhibitors, etoposide, and ICRF193, than wild type cells. Our results also showed that depletion of RNF43 results in apoptosis upon etoposide-mediated DNA damage. The delay in resolution of γH2AX and 53BP1 foci formation after etoposide treatment, as well as epistasis analysis with DNAPKcs, suggested that RNF43 might participate in DNA repair of etoposide-induced DSB via non-homologous end joining. Disturbed γH2AX foci formation in MEFs following pulse etoposide treatment supported the notion that RNF43 also functions DNA repair in mammalian cells. These findings propose two possible functions of RNF43, either participating in NHEJ or removing the blockage of 5' topo II adducts from DSB ends.


Subject(s)
DNA Repair/physiology , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , DNA Repair/drug effects , DNA Repair/genetics , DNA Topoisomerases, Type II/drug effects , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Etoposide/adverse effects , Etoposide/pharmacology , Gene Knockout Techniques/methods , Mice , Oncogene Proteins/genetics , Recombination, Genetic/drug effects , Topoisomerase II Inhibitors/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/physiology
3.
J Appl Clin Med Phys ; 20(11): 88-94, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31609090

ABSTRACT

PURPOSE: We introduce a technique that employs a 2D detector in transmission mode (TM) to verify dose maps at a depth of dmax in Solid Water. TM measurements, when taken at a different surface-to-detector distance (SDD), allow for the area at dmax (in which the dose map is calculated) to be adjusted. METHODS: We considered the detector prototype "MP512" (an array of 512 diode-sensitive volumes, 2 mm spatial resolution). Measurements in transmission mode were taken at SDDs in the range from 0.3 to 24 cm. Dose mode (DM) measurements were made at dmax in Solid Water. We considered radiation fields in the range from 2 × 2 cm2 to 10 × 10 cm2 , produced by 6 MV flattened photon beams; we derived a relationship between DM and TM measurements as a function of SDD and field size. The relationship was used to calculate, from TM measurements at 4 and 24 cm SDD, dose maps at dmax in fields of 1 × 1 cm2 and 4 × 4 cm2 , and in IMRT fields. Calculations were cross-checked (gamma analysis) with the treatment planning system and with measurements (MP512, films, ionization chamber). RESULTS: In the square fields, calculations agreed with measurements to within ±2.36%. In the IMRT fields, using acceptance criteria of 3%/3 mm, 2%/2 mm, 1%/1 mm, calculations had respective gamma passing rates greater than 96.89%, 90.50%, 62.20% (for a 4 cm SSD); and greater than 97.22%, 93.80%, 59.00% (for a 24 cm SSD). Lower rates (1%/1 mm criterion) can be explained by submillimeter misalignments, dose averaging in calculations, noise artifacts in film dosimetry. CONCLUSIONS: It is possible to perform TM measurements at the SSD which produces the best fit between the area at dmax in which the dose map is calculated and the size of the monitored target.


Subject(s)
Algorithms , Film Dosimetry/instrumentation , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/instrumentation , Humans , Organs at Risk/radiation effects , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
4.
Med Phys ; 44(8): 4313-4321, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28556261

ABSTRACT

PURPOSE: This study aims to investigate the 2D monolithic silicon diode array size of 52 × 52 mm2 (MP512) angular response. An angular correction method has been developed that improves the accuracy of dose measurement in a small field. METHODS: The MP512 was placed at the center of a cylindrical phantom, irradiated using 6 MV and 10 MV photons and incrementing the incidence of the beam angle in 15° steps from 0° to 180°, and then in 1° steps between 85° and 95°. The MP512 response was characterized for square field sizes varying between 1 × 1 cm2 and 10 × 10 cm2 . The angular correction factor was obtained as the ratio of MP512 response to EBT3 film measured doses as a function of the incidence angle (Ɵ) and was normalized at 0° incidence angle. Beam profiles of the corrected MP512 responses were compared with the EBT3 responses to verify the effectiveness of the method adopted. RESULTS: The intrinsic angular dependence of the MP512 shows maximum relative deviation from the response normalized to 0° of 18.5 ± 0.5% and 15.5 ± 0.5% for 6 MV and 10 MV, respectively, demonstrating that the angular response is sensitive to the energy. In contrast, the variation of angular response is less affected by field size. Comparison of cross-plane profiles measured by the corrected MP512 and EBT3 shows an agreement within ±2% for all field sizes when the beams irradiated the array at 0°, 45°, 135°, and 180° angles of incidence from the normal to the detector plane. At 90° incidence, corresponding to a depth dose measurement, up to a 6% discrepancy was observed for a 1 × 1 cm2 field of 6 MV. CONCLUSION: An angular correction factor can be adopted for small field sizes. Measurements discrepancies could be encountered when irradiating with very small fields parallel to the detector plane. Using this approach, the MP512 is shown to be a suitable detector for 2D dose mapping of small field size photon beams.


Subject(s)
Phantoms, Imaging , Radiometry , Silicon , Humans , Particle Accelerators , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...