Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 8(2): 113-26, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15063861

ABSTRACT

We evaluate the accuracy of a vascular segmentation algorithm which uses continuity in the maximum intensity projection (MIP) depth Z-buffer as a pre-processing step to generate a list of 3D seed points for further segmentation. We refer to the algorithm as Z-buffer segmentation (ZBS). The pre-processing of the MIP Z-buffer is based on smoothness measured using the minimum chi-square value of a least square fit. Points in the Z-buffer with chi-square values below a selected threshold are used as seed points for 3D region growing. The ZBS algorithm couples spatial continuity information with intensity information to create a simple yet accurate segmentation algorithm. We examine the dependence of the segmentation on various parameters of the algorithm. Performance is assessed in terms of the inclusion/exclusion of vessel/background voxels in the segmentation of intracranial time-of-flight MRA images. The evaluation is based on 490,256 voxels from 14 patients which were classified by an observer. ZBS performance was compared to simple thresholding and to segmentation based on vessel enhancement filtering. The ZBS segmentation was only weakly dependent on the parameters of the initial MIP image generation, indicating the robustness of this approach. Region growing based on Z-buffer generated seeds was advantageous compared to simple thresholding. The ZBS algorithm provided segmentation accuracies similar to that obtained with the vessel enhancement filter. The ZBS performance was notably better than the filter based segmentation for aneurysms where the assumptions of the filter were violated. As currently implemented the algorithm slightly under-segments the intracranial vasculature.


Subject(s)
Algorithms , Brain/blood supply , Image Enhancement/methods , Magnetic Resonance Angiography/methods , Chi-Square Distribution , Humans , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/statistics & numerical data , Imaging, Three-Dimensional/methods , Imaging, Three-Dimensional/statistics & numerical data , Intracranial Aneurysm/diagnosis , Least-Squares Analysis , Magnetic Resonance Angiography/statistics & numerical data , ROC Curve
2.
J Biomed Inform ; 37(1): 19-29, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15016383

ABSTRACT

We have developed an algorithm known as the Z-buffer segmentation (ZBS) algorithm for segmenting vascular structures from 3D MRA images. Previously we evaluated the accuracy of the ZBS algorithm on a voxel level in terms of inclusion and exclusion of vascular and background voxels. In this paper we evaluate the diagnostic fidelity of the ZBS algorithm. By diagnostic fidelity we mean that the data preserves the structural information necessary for diagnostic evaluation. This evaluation is necessary to establish the potential usefulness of the segmentation for improved image display, or whether the segmented data could form the basis of a computerized analysis tool. We assessed diagnostic fidelity by measuring how well human observers could detect aneurysms in the segmented data sets. ZBS segmentation of 30 MRA cases containing 29 aneurysms was performed. Image display used densitometric reprojections with shaded surface highlighting that were generated from the segmented data. Three neuroradiologists independently reviewed the generated ZBS images for aneurysms. The observers had 80% sensitivity (90% for aneurysms larger than 2mm) with 0.13 false positives per image. Good agreement with the gold standard for describing aneurysm size and orientation was shown. These preliminary results suggest that the segmentation has diagnostic fidelity with the original data and may be useful for improved visualization or automated analysis of the vasculature.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Intracranial Aneurysm/diagnosis , Magnetic Resonance Angiography/methods , Pattern Recognition, Automated , False Positive Reactions , Feasibility Studies , Humans , Pilot Projects , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL