Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
ArXiv ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38699161

ABSTRACT

Computational methods for assessing the likely impacts of mutations, known as variant effect predictors (VEPs), are widely used in the assessment and interpretation of human genetic variation, as well as in other applications like protein engineering. Many different VEPs have been released to date, and there is tremendous variability in their underlying algorithms and outputs, and in the ways in which the methodologies and predictions are shared. This leads to considerable challenges for end users in knowing which VEPs to use and how to use them. Here, to address these issues, we provide guidelines and recommendations for the release of novel VEPs. Emphasising open-source availability, transparent methodologies, clear variant effect score interpretations, standardised scales, accessible predictions, and rigorous training data disclosure, we aim to improve the usability and interpretability of VEPs, and promote their integration into analysis and evaluation pipelines. We also provide a large, categorised list of currently available VEPs, aiming to facilitate the discovery and encourage the usage of novel methods within the scientific community.

2.
Nat Commun ; 15(1): 4164, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755171

ABSTRACT

Many studies have used mobile device location data to model SARS-CoV-2 dynamics, yet relationships between mobility behavior and endemic respiratory pathogens are less understood. We studied the effects of population mobility on the transmission of 17 endemic viruses and SARS-CoV-2 in Seattle over a 4-year period, 2018-2022. Before 2020, visits to schools and daycares, within-city mixing, and visitor inflow preceded or coincided with seasonal outbreaks of endemic viruses. Pathogen circulation dropped substantially after the initiation of COVID-19 stay-at-home orders in March 2020. During this period, mobility was a positive, leading indicator of transmission of all endemic viruses and lagging and negatively correlated with SARS-CoV-2 activity. Mobility was briefly predictive of SARS-CoV-2 transmission when restrictions relaxed but associations weakened in subsequent waves. The rebound of endemic viruses was heterogeneously timed but exhibited stronger, longer-lasting relationships with mobility than SARS-CoV-2. Overall, mobility is most predictive of respiratory virus transmission during periods of dramatic behavioral change and at the beginning of epidemic waves.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/epidemiology , SARS-CoV-2/isolation & purification , Washington/epidemiology , Pandemics , Cities/epidemiology , Seasons , Travel/statistics & numerical data
3.
medRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645101

ABSTRACT

Background: Multiplexed Assays of Variant Effects (MAVEs) can test all possible single variants in a gene of interest. The resulting saturation-style data may help resolve variant classification disparities between populations, especially for variants of uncertain significance (VUS). Methods: We analyzed clinical significance classifications in 213,663 individuals of European-like genetic ancestry versus 206,975 individuals of non-European-like genetic ancestry from All of Us and the Genome Aggregation Database. Then, we incorporated clinically calibrated MAVE data into the Clinical Genome Resource's Variant Curation Expert Panel rules to automate VUS reclassification for BRCA1, TP53, and PTEN . Results: Using two orthogonal statistical approaches, we show a higher prevalence ( p ≤5.95e-06) of VUS in individuals of non-European-like genetic ancestry across all medical specialties assessed in all three databases. Further, in the non-European-like genetic ancestry group, higher rates of Benign or Likely Benign and variants with no clinical designation ( p ≤2.5e-05) were found across many medical specialties, whereas Pathogenic or Likely Pathogenic assignments were higher in individuals of European-like genetic ancestry ( p ≤2.5e-05). Using MAVE data, we reclassified VUS in individuals of non-European-like genetic ancestry at a significantly higher rate in comparison to reclassified VUS from European-like genetic ancestry ( p =9.1e-03) effectively compensating for the VUS disparity. Further, essential code analysis showed equitable impact of MAVE evidence codes but inequitable impact of allele frequency ( p =7.47e-06) and computational predictor ( p =6.92e-05) evidence codes for individuals of non-European-like genetic ancestry. Conclusions: Generation of saturation-style MAVE data should be a priority to reduce VUS disparities and produce equitable training data for future computational predictors.

5.
J Infect Dis ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531685

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen-detection rapid diagnostic tests (Ag-RDTs) have become widely utilized but longitudinal characterization of their community-based performance remains incompletely understood. METHODS: This prospective longitudinal study at a large public university in Seattle, WA utilized remote enrollment, online surveys, and self-collected nasal swab specimens to evaluate Ag-RDT performance against real-time reverse transcription polymerase chain reaction (rRT-PCR) in the context of SARS-CoV-2 Omicron. Ag-RDT sensitivity and specificity within 1 day of rRT-PCR were evaluated by symptom status throughout the illness episode and Orf1b cycle threshold (Ct). RESULTS: From February to December 2022, 5,757 participants reported 17,572 Ag-RDT results and completed 12,674 rRT-PCR tests, of which 995 (7.9%) were rRT-PCR-positive. Overall sensitivity and specificity were 53.0% (95% CI: 49.6-56.4%) and 98.8% (98.5-99.0%), respectively. Sensitivity was comparatively higher for Ag-RDTs used 1 day after rRT-PCR (69.0%), 4 to 7 days post-symptom onset (70.1%), and Orf1b Ct ≤20 (82.7%). Serial Ag-RDT sensitivity increased with repeat testing ≥2 (68.5%) and ≥4 (75.8%) days after an initial Ag-RDT-negative result. CONCLUSION: Ag-RDT performance varied by clinical characteristics and temporal testing patterns. Our findings support recommendations for serial testing following an initial Ag-RDT-negative result, especially among recently symptomatic persons or those at high-risk for SARS-CoV-2 infection.

6.
BMC Infect Dis ; 24(1): 309, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481147

ABSTRACT

BACKGROUND: Early during the COVID-19 pandemic, it was important to better understand transmission dynamics of SARS-CoV-2, the virus that causes COVID-19. Household contacts of infected individuals are particularly at risk for infection, but delays in contact tracing, delays in testing contacts, and isolation and quarantine posed challenges to accurately capturing secondary household cases. METHODS: In this study, 346 households in the Seattle region were provided with respiratory specimen collection kits and remotely monitored using web-based surveys for respiratory illness symptoms weekly between October 1, 2020, and June 20, 2021. Symptomatic participants collected respiratory specimens at symptom onset and mailed specimens to the central laboratory in Seattle. Specimens were tested for SARS-CoV-2 using RT-PCR with whole genome sequencing attempted when positive. SARS-CoV-2-infected individuals were notified, and their household contacts submitted specimens every 2 days for 14 days. RESULTS: In total, 1371 participants collected 2029 specimens that were tested; 16 individuals (1.2%) within 6 households tested positive for SARS-CoV-2 during the study period. Full genome sequences were generated from 11 individuals within 4 households. Very little genetic variation was found among SARS-CoV-2 viruses sequenced from different individuals in the same household, supporting transmission within the household. CONCLUSIONS: This study indicates web-based surveillance of respiratory symptoms, combined with rapid and longitudinal specimen collection and remote contact tracing, provides a viable strategy to monitor households and detect household transmission of SARS-CoV-2. TRIAL REGISTRATION IDENTIFIER: NCT04141930, Date of registration 28/10/2019.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , Quarantine , SARS-CoV-2/genetics , Washington/epidemiology
7.
PLoS Pathog ; 20(3): e1012117, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38530853

ABSTRACT

SARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving local health departments to design interventions with limited information. We analyzed SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with epidemiological and cell phone mobility data to investigate fine scale spatiotemporal SARS-CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US county. We applied an approximate structured coalescent approach to model transmission within and between North King County and South King County alongside the rate of outside introductions into the county. Our phylodynamic analyses reveal that following stay-at-home orders, the epidemic trajectories of North and South King County began to diverge. We find that South King County consistently had more reported and estimated cases, COVID-19 hospitalizations, and longer persistence of local viral transmission when compared to North King County, where viral importations from outside drove a larger proportion of new cases. Using mobility and demographic data, we also find that South King County experienced a more modest and less sustained reduction in mobility following stay-at-home orders than North King County, while also bearing more socioeconomic inequities that might contribute to a disproportionate burden of SARS-CoV-2 transmission. Overall, our findings suggest a role for local-scale phylodynamics in understanding the heterogeneous transmission landscape.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Washington/epidemiology
8.
Circ Genom Precis Med ; 17(2): e004377, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362799

ABSTRACT

BACKGROUND: Pathogenic autosomal-dominant missense variants in MYH7 (myosin heavy chain 7), which encodes the sarcomeric protein (ß-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of MYH7 missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of MYH7 variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of MYH7 variant hiPSC-derived cardiomyocytes are unknown. METHODS: To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 MYH7 codon variants suitable for deep mutational scanning. We first established that ß-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic MYH7 variant. We then differentiated the MYH7 missense variant hiPSC library to cardiomyocytes for multiplexed assessment of ß-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival. RESULTS: Both the multiplexed assessment of ß-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional MYH7 missense variants not yet detected in patients. CONCLUSIONS: This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of MYH7 missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/genetics , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cell Differentiation/genetics , Cardiac Myosins/genetics
9.
Vaccine ; 42(6): 1332-1341, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38307746

ABSTRACT

Vaccine effectiveness (VE) studies utilizing the test-negative design are typically conducted in clinical settings, rather than community populations, leading to bias in VE estimates against mild disease and limited information on VE in healthy young adults. In a community-based university population, we utilized data from a large SARS-CoV-2 testing program to estimate relative VE of COVID-19 mRNA vaccine primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection from September 2021 to July 2022. We used the test-negative design and logistic regression implemented via generalized estimating equations adjusted for age, calendar time, prior SARS-CoV-2 infection, and testing frequency (proxy for test-seeking behavior) to estimate relative VE. Analyses included 2,218 test-positive cases (59 % received monovalent booster dose) and 9,615 test-negative controls (62 %) from 9,066 individuals, with median age of 21 years, mostly students (71 %), White (56 %) or Asian (28 %), and with few comorbidities (3 %). More cases (23 %) than controls (6 %) had COVID-19-like illness. Estimated adjusted relative VE of primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection was 40 % (95 % CI: 33-47 %) during the overall analysis period and 46 % (39-52 %) during the period of Omicron circulation. Relative VE was greater for those without versus those with prior SARS-CoV-2 infection (41 %, 34-48 % versus 33 %, 9 %-52 %, P < 0.001). Relative VE was also greater in the six months after receiving a booster dose (41 %, 33-47 %) compared to more than six months (27 %, 8-42 %), but this difference was not statistically significant (P = 0.06). In this relatively young and healthy adult population, an mRNA monovalent booster dose provided increased protection against symptomatic SARS-CoV-2 infection, overall and with the Omicron variant. University testing programs may be utilized for estimating VE in healthy young adults, a population that is not well-represented by routine VE studies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Young Adult , Humans , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Universities , SARS-CoV-2 , RNA, Messenger
10.
medRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37873251

ABSTRACT

Background: Early host immunity to acute respiratory infections (ARIs) is heterogenous, dynamic, and critical to an individual's infection outcome. Due to limitations in sampling frequency/timepoints, kinetics of early immune dynamics in natural human infections remain poorly understood. In this nationwide prospective cohort study, we leveraged a self-blood collection tool (homeRNA) to profile detailed kinetics of the pre-symptomatic to convalescence host immunity to contemporaneous respiratory pathogens. Methods: We enrolled non-symptomatic adults with recent exposure to ARIs who subsequently tested negative (exposed-uninfected) or positive for respiratory pathogens. Participants self-collected blood and nasal swabs daily for seven consecutive days followed by weekly blood collection for up to seven additional weeks. Symptom burden was assessed during each collection. Nasal swabs were tested for SARS-CoV-2 and common respiratory pathogens. 92 longitudinal blood samples spanning the pre-shedding to post-acute phase of eight SARS-CoV-2-infected participants and 40 interval-matched samples from four exposed-uninfected participants were subjected to high-frequency longitudinal profiling of 773 host immune genes. Findings: Between June 2021 - April 2022, 68 participants across 26 U.S. states completed the study and self-collected a total of 691 and 466 longitudinal blood and nasal swab samples along with 688 symptom surveys. SARS-CoV-2 was detected in 17 out of 22 individuals with study-confirmed respiratory infection. With rapid dissemination of home self-collection kits, two and four COVID-19+ participants started collection prior to viral shedding and symptom onset, respectively, enabling us to profile detailed expression kinetics of the earliest blood transcriptional response to contemporaneous variants of concern. In pre-shedding samples, we observed transient but robust expression of T-cell response signatures, transcription factor complexes, prostaglandin biosynthesis genes, pyrogenic cytokines, and cytotoxic granule genes. This is followed by a rapid induction of many interferon-stimulated genes (ISGs), concurrent to onset of viral shedding and increase in nasal viral load. Finally, we observed increased expression of host defense peptides (HDPs) in exposed-uninfected individuals over the 4-week observational window. Interpretation: We demonstrated that unsupervised self-collection and stabilization of capillary blood can be applied to natural infection studies to characterize detailed early host immune kinetics at a temporal resolution comparable to that of human challenge studies. The remote (decentralized) study framework enables conduct of large-scale population-wide longitudinal mechanistic studies. Expression of cytotoxic/T-cell signatures in pre-shedding samples preceding expansion of innate ISGs suggests a potential role for T-cell mediated pathogen control during early infection. Elevated expression of HDPs in exposed-uninfected individuals warrants further validation studies to assess their potential role in protective immunity during pathogen exposure. Funding: This study was funded by R35GM128648 to ABT for in-lab developments of homeRNA, Packard Fellowship from the David and Lucile Packard Foundation to ABT, and R01AI153087 to AW.

11.
J Clin Microbiol ; 62(2): e0128523, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38131692

ABSTRACT

The COVID-19 pandemic spurred the development of innovative solutions for specimen collection and molecular detection for large-scale community testing. Among these developments is the RHINOstic nasal swab, a plastic anterior nares swab built into the cap of a standard matrix tube that facilitates automated processing of up to 96 specimens at a time. In a study of unsupervised self-collection utilizing these swabs, we demonstrate comparable analytic performance and shipping stability compared to traditional anterior nares swabs, as well as significant improvements in laboratory processing efficiency. The use of these swabs may allow laboratories to accommodate large numbers of sample collections during periods of high testing demand. Automation-friendly nasal swabs are an important tool for high-throughput processing of samples that may be adopted in response to future respiratory viral pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques , Pandemics , Specimen Handling , Nasopharynx
13.
PLoS One ; 18(11): e0293422, 2023.
Article in English | MEDLINE | ID: mdl-37917606

ABSTRACT

Delineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation. Here we employ a homology-directed repair (HDR) reporter assay to evaluate over 300 missense and nonsense BRCA1 variants between amino acid residues 1280 and 1576, which encompasses the coiled-coil and serine cluster domains. Functionally abnormal variants tended to cluster in residues known to interact with PALB2, which is critical for homology-directed repair. Multiplexed results were confirmed by singleton assay and by ClinVar database variant interpretations. Comparison of multiplexed results to designated benign or likely benign or pathogenic or likely pathogenic variants in the ClinVar database yielded 100% specificity and 100% sensitivity of the multiplexed assay. Clinicians can reference the results of this functional assay for help in guiding cancer treatment and surveillance options. These results are the first to evaluate this domain of BRCA1 using a multiplexed approach and indicate the importance of this domain in the DNA repair process.


Subject(s)
Mutation, Missense , Serine , Humans , Serine/genetics , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Tumor Suppressor Proteins/genetics , DNA Repair/genetics , Recombinational DNA Repair , Genetic Predisposition to Disease
14.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37905042

ABSTRACT

Background: A variant can be pathogenic or benign with relation to a human disease. Current classification categories from benign to pathogenic reflect a probabilistic summary of current understanding. A primary metric of clinical utility for multiplexed assays of variant effect (MAVE) is the number of variants that can be reclassified from uncertain significance (VUS). However, we hypothesized that this measure of utility underrepresents the information gained from MAVEs and that an information theory approach which includes data that does not reclassify variants will better reflect true information gain. We used this information theory approach to evaluate the information gain, in bits, for MAVEs of BRCA1, PTEN, and TP53. Here, one bit represents the amount of information required to completely classify a single variant starting from no information. Results: BRCA1 MAVEs produced a total of 831.2 bits of information, 6.58% of the total missense information in BRCA1 and a 22-fold increase over the information that only contributed to VUS reclassification. PTEN MAVEs produced 2059.6 bits of information which represents 32.8% of the total missense information in PTEN and an 85-fold increase over the information that contributed to VUS reclassification. TP53 MAVEs produced 277.8 bits of information which represents 6.22% of the total missense information in TP53 and a 3.5-fold increase over the information that contributed to VUS reclassification. Conclusions: An information content approach will more accurately portray information gained through MAVE mapping efforts than counting the number of variants reclassified. This information content approach may also help define the impact of modifying information definitions used to classify many variants, such as guideline rule changes.

15.
Sci Adv ; 9(41): eadh1914, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824616

ABSTRACT

Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior, and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus macaque brain. Together, we profiled 2.58 M transcriptomes and 1.59 M epigenomes from single nuclei sampled from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular signatures of region-specific functions. We also identified 1.19 M candidate regulatory elements, many previously unidentified, allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk in a cell type-specific manner. Altogether, this multi-omic atlas provides an open resource for investigating the evolution of the human brain and identifying novel targets for disease interventions.


Subject(s)
Brain , Multiomics , Animals , Macaca mulatta/genetics , Transcriptome
16.
Am J Hum Genet ; 110(8): 1229-1248, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541186

ABSTRACT

Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.


Subject(s)
Exome , Genetic Testing , Humans , Exome/genetics , Sequence Analysis, DNA , Phenotype , Exome Sequencing , Rare Diseases
17.
PLoS Genet ; 19(8): e1010739, 2023 08.
Article in English | MEDLINE | ID: mdl-37578980

ABSTRACT

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1.


Subject(s)
BRCA1 Protein , Recombinational DNA Repair , Female , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/genetics , DNA , DNA Breaks, Double-Stranded , Genetic Predisposition to Disease , Mutation, Missense , Ovarian Neoplasms/genetics , Tumor Suppressor Proteins/genetics
18.
Front Public Health ; 11: 1090148, 2023.
Article in English | MEDLINE | ID: mdl-37408748

ABSTRACT

Objective: Multifarious barriers to accessing healthcare services among people experiencing homelessness (PEH) lead to delays in seeking care for acute infections, including those caused by respiratory viruses. PEH are at high risk of acute respiratory illness (ARI)-related complications, especially in shelter settings that may facilitate virus spread, yet data characterizing healthcare utilization for ARI episodes among sheltered PEH remained limited. Methods: We conducted a cross-sectional study of viral respiratory infection among adult residents at two homeless shelters in Seattle, Washington between January and May 2019. We assessed factors associated with seeking medical care for ARI via self-report. We collected illness questionnaires and nasal swabs were tested for respiratory viruses by reverse transcription quantitative real-time PCR (RT-qPCR). Results: We observed 825 encounters from 649 unique participants; 241 (29.2%) encounters reported seeking healthcare for their ARI episode. Seasonal influenza vaccine receipt (adjusted prevalence ratio [aPR] 1.39, 95% CI 1.02-1.88), having health insurance (aPR 2.77, 95% CI 1.27-6.02), chronic lung conditions (aPR 1.55, 95% CI 1.12-2.15), and experiencing influenza-like-illness symptoms (aPR 1.63, 95% CI 1.20 - 2.20) were associated with increased likelihood of seeking care. Smoking (aPR 0.65, 95% CI 0.45-0.92) was associated with decreased likelihood of seeking care. Discussion: Findings suggest that care seeking for viral respiratory illness among PEH may be supported by prior engagement with primary healthcare services. Strategies to increase healthcare utilization may lead to earlier detection of respiratory viruses.


Subject(s)
Ill-Housed Persons , Respiratory Tract Infections , Virus Diseases , Viruses , Humans , Adult , Respiratory Tract Infections/epidemiology , Cross-Sectional Studies , Washington/epidemiology , Patient Acceptance of Health Care
19.
Genome Biol ; 24(1): 147, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37394429

ABSTRACT

Sequencing has revealed hundreds of millions of human genetic variants, and continued efforts will only add to this variant avalanche. Insufficient information exists to interpret the effects of most variants, limiting opportunities for precision medicine and comprehension of genome function. A solution lies in experimental assessment of the functional effect of variants, which can reveal their biological and clinical impact. However, variant effect assays have generally been undertaken reactively for individual variants only after and, in most cases long after, their first observation. Now, multiplexed assays of variant effect can characterise massive numbers of variants simultaneously, yielding variant effect maps that reveal the function of every possible single nucleotide change in a gene or regulatory element. Generating maps for every protein encoding gene and regulatory element in the human genome would create an 'Atlas' of variant effect maps and transform our understanding of genetics and usher in a new era of nucleotide-resolution functional knowledge of the genome. An Atlas would reveal the fundamental biology of the human genome, inform human evolution, empower the development and use of therapeutics and maximize the utility of genomics for diagnosing and treating disease. The Atlas of Variant Effects Alliance is an international collaborative group comprising hundreds of researchers, technologists and clinicians dedicated to realising an Atlas of Variant Effects to help deliver on the promise of genomics.


Subject(s)
Genetic Variation , Genomics , Humans , Genome, Human , High-Throughput Nucleotide Sequencing , Precision Medicine
20.
Front Pediatr ; 11: 1198278, 2023.
Article in English | MEDLINE | ID: mdl-37484765

ABSTRACT

Background: Respiratory viruses might influence Streptococcus pneumoniae nasal carriage and subsequent disease risk. We estimated the association between common respiratory viruses and semiquantitative S. pneumoniae nasal carriage density in a household setting before and during the COVID-19 pandemic. Methods: From November 2019-June 2021, we enrolled participants in a remote household surveillance study of respiratory pathogens. Participants submitted weekly reports of acute respiratory illness (ARI) symptoms. Mid-turbinate or anterior nasal swabs were self-collected at enrollment, when ARI occurred, and, in the second year of the study only, from household contacts after SARS-CoV-2 was detected in a household member. Specimens were tested using multiplex reverse-transcription PCR for respiratory pathogens, including S. pneumoniae, rhinovirus, adenovirus, common human coronavirus, influenza A/B virus, respiratory syncytial virus (RSV) A/B, human metapneumovirus, enterovirus, and human parainfluenza virus. We estimated differences in semiquantitative S. pneumoniae nasal carriage density, estimated by the inverse of S. pneumoniae relative cycle threshold (Crt) values, with and without viral detection for any virus and for specific respiratory viruses using linear generalized estimating equations of S. pneumoniae Crt values on virus detection adjusted for age and swab type and accounting for clustering of swabs within households. Results: We collected 346 swabs from 239 individuals in 151 households that tested positive for S. pneumoniae (n = 157 with and 189 without ≥1 viruses co-detected). Difficulty breathing, cough, and runny nose were more commonly reported among individuals with specimens with viral co-detection compared to without (15%, 80% and 93% vs. 8%, 57%, and 51%, respectively) and ear pain and headache were less commonly reported (3% and 26% vs. 16% and 41%, respectively). For specific viruses among all ages, semiquantitative S. pneumoniae nasal carriage density was greater with viral co-detection for enterovirus, RSV A/B, adenovirus, rhinovirus, and common human coronavirus (P < 0.01 for each). When stratified by age, semiquantitative S. pneumoniae nasal carriage density was significantly greater with viral co-detection among children aged <5 (P = 0.002) and 5-17 years (P = 0.005), but not among adults aged 18-64 years (P = 0.29). Conclusion: Detection of common respiratory viruses was associated with greater concurrent S. pneumoniae semiquantitative nasal carriage density in a household setting among children, but not adults.

SELECTION OF CITATIONS
SEARCH DETAIL
...