Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Cell Stem Cell ; 29(3): 355-371.e10, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245467

ABSTRACT

Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.


Subject(s)
Liver Transplantation , Animals , Bile Ducts/pathology , Epithelial Cells/pathology , Fibrosis , Humans , Living Donors , Mice
2.
iScience ; 24(6): 102552, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34151225

ABSTRACT

Liver disease is a major cause of premature death. Oxidative stress in the liver represents a key disease driver. Compounds, such as dimethyl fumarate (DMF), can activate the antioxidant response and are used clinically to treat disease. In this study, we tested the protective properties of DMF before or after paracetamol exposure. Following DMF administration, Nrf2 nuclear translocation was tracked at the single-cell level and target gene transactivation confirmed. Next, the protective properties of DMF were examined following paracetamol exposure. Transcriptomic and biochemical analysis revealed that DMF rescue was underpinned by reduced Nf-kB and TGF-ß signaling and cell senescence. Following on from these studies, we employed a Zebrafish model to study paracetamol exposure in vivo. We combined a genetically modified Zebrafish model, expressing green fluorescent protein exclusively in the liver, with automated microscopy. Pre-treatment with DMF, prior to paracetamol exposure, led to reduced liver damage in Zebrafish demonstrating protective properties.

3.
Hepatology ; 74(2): 973-986, 2021 08.
Article in English | MEDLINE | ID: mdl-33872408

ABSTRACT

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Subject(s)
Liver Regeneration/drug effects , Liver/drug effects , NF-E2-Related Factor 2/agonists , Oleanolic Acid/analogs & derivatives , Adult , Aged, 80 and over , Animals , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Hepatectomy , Hepatocytes , Humans , Liver/physiology , Liver/surgery , Liver Regeneration/genetics , Male , Mice , Mice, Knockout , Middle Aged , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oleanolic Acid/administration & dosage , Primary Cell Culture
4.
Am J Transplant ; 21(9): 2950-2963, 2021 09.
Article in English | MEDLINE | ID: mdl-33428803

ABSTRACT

Transplantation of islets in type 1 diabetes (T1D) is limited by poor islet engraftment into the liver, with two to three donor pancreases required per recipient. We aimed to condition the liver to enhance islet engraftment to improve long-term graft function. Diabetic mice received a non-curative islet transplant (n = 400 islets) via the hepatic portal vein (HPV) with fibroblast growth factor 7-loaded galactosylated poly(DL-lactide-co-glycolic acid) (FGF7-GAL-PLGA) particles; 26-µm diameter particles specifically targeted the liver, promoting hepatocyte proliferation in short-term experiments: in mice receiving 0.1-mg FGF7-GAL-PLGA particles (60-ng FGF7) vs vehicle, cell proliferation was induced specifically in the liver with greater efficacy and specificity than subcutaneous FGF7 (1.25 mg/kg ×2 doses; ~75-µg FGF7). Numbers of engrafted islets and vascularization were greater in liver sections of mice receiving islets and FGF7-GAL-PLGA particles vs mice receiving islets alone, 72 h posttransplant. More mice (six of eight) that received islets and FGF7-GAL-PLGA particles normalized blood glucose concentrations by 30-days posttransplant, versus zero of eight mice receiving islets alone with no evidence of increased proliferation of cells within the liver at this stage and normal liver function tests. This work shows that liver-targeted FGF7-GAL-PLGA particles achieve selective FGF7 delivery to the liver-promoting islet engraftment to help normalize blood glucose levels with a good safety profile.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Blood Glucose , Fibroblast Growth Factor 7 , Graft Survival , Mice
5.
J Hepatol ; 74(4): 860-872, 2021 04.
Article in English | MEDLINE | ID: mdl-33221352

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a cancer of the hepatic bile ducts that is rarely resectable and is associated with poor prognosis. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is known to signal via its receptor fibroblast growth factor-inducible 14 (Fn14) and induce cholangiocyte and myofibroblast proliferation in liver injury. We aimed to characterise its role in CCA. METHODS: The expression of the TWEAK ligand and Fn14 receptor was assessed immunohistochemically and by bulk RNA and single cell transcriptomics of human liver tissue. Spatiotemporal dynamics of pathway regulation were comprehensively analysed in rat and mouse models of thioacetamide (TAA)-mediated CCA. Flow cytometry, qPCR and proteomic analyses of CCA cell lines and conditioned medium experiments with primary macrophages were performed to evaluate the downstream functions of TWEAK/Fn14. In vivo pathway manipulation was assessed via TWEAK overexpression in NICD/AKT-induced CCA or genetic Fn14 knockout during TAA-mediated carcinogenesis. RESULTS: Our data reveal TWEAK and Fn14 overexpression in multiple human CCA cohorts, and Fn14 upregulation in early TAA-induced carcinogenesis. TWEAK regulated the secretion of factors from CC-SW-1 and SNU-1079 CCA cells, inducing polarisation of proinflammatory CD206+ macrophages. Pharmacological blocking of the TWEAK downstream target chemokine monocyte chemoattractant protein 1 (MCP-1 or CCL2) significantly reduced CCA xenograft growth, while TWEAK overexpression drove cancer-associated fibroblast proliferation and collagen deposition in the tumour niche. Genetic Fn14 ablation significantly reduced inflammatory, fibrogenic and ductular responses during carcinogenic TAA-mediated injury. CONCLUSION: These novel data provide evidence for the action of TWEAK/Fn14 on macrophage recruitment and phenotype, and cancer-associated fibroblast proliferation in CCA. Targeting TWEAK/Fn14 and its downstream signals may provide a means to inhibit CCA niche development and tumour growth. LAY SUMMARY: Cholangiocarcinoma is an aggressive, chemotherapy-resistant liver cancer. Interactions between tumour cells and cells that form a supportive environment for the tumour to grow are a source of this aggressiveness and resistance to chemotherapy. Herein, we describe interactions between tumour cells and their supportive environment via a chemical messenger, TWEAK and its receptor Fn14. TWEAK/Fn14 alters the recruitment and type of immune cells in tumours, increases the growth of cancer-associated fibroblasts in the tumour environment, and is a potential target to reduce tumour formation.


Subject(s)
Bile Duct Neoplasms , Chemokine CCL2/metabolism , Cholangiocarcinoma , Cytokine TWEAK/metabolism , Fibroblast Growth Factors/metabolism , Animals , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Drug Discovery , Humans , Mice , Rats , Signal Transduction , Tumor Microenvironment , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
6.
EBioMedicine ; 62: 103092, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33232872

ABSTRACT

BACKGROUND: Extracellular microRNAs enter kidney cells and modify gene expression. We used a Dicer-hepatocyte-specific microRNA conditional-knock-out (Dicer-CKO) mouse to investigate microRNA transfer from liver to kidney. METHODS: Dicerflox/flox mice were treated with a Cre recombinase-expressing adenovirus (AAV8) to selectively inhibit hepatocyte microRNA production (Dicer-CKO). Organ microRNA expression was measured in health and following paracetamol toxicity. The functional consequence of hepatic microRNA transfer was determined by measuring the expression and activity of cytochrome P450 2E1 (target of the hepatocellular miR-122), and by measuring the effect of serum extracellular vesicles (ECVs) on proximal tubular cell injury. In humans with liver injury we measured microRNA expression in urinary ECVs. A murine model of myocardial infarction was used as a non-hepatic model of microRNA release. FINDINGS: Dicer-CKO mice demonstrated a decrease in kidney miR-122 in the absence of other microRNA changes. During hepatotoxicity, miR-122 increased in kidney tubular cells; this was abolished in Dicer-CKO mice. Depletion of hepatocyte microRNA increased kidney cytochrome P450 2E1 expression and activity. Serum ECVs from mice with hepatotoxicity increased proximal tubular cell miR-122 and prevented cisplatin toxicity. miR-122 increased in urinary ECVs during human hepatotoxicity. Transfer of microRNA was not restricted to liver injury -miR-499 was released following cardiac injury and correlated with an increase in the kidney. INTERPRETATION: Physiological transfer of functional microRNA to the kidney is increased by liver injury and this signalling represents a new paradigm for understanding the relationship between liver injury and renal function. FUNDING: Kidney Research UK, Medical Research Scotland, Medical Research Council.


Subject(s)
Cytochrome P-450 CYP2E1/genetics , Epithelial Cells/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Kidney Tubules/metabolism , MicroRNAs/genetics , RNA Interference , Animals , Cytochrome P-450 CYP2E1/metabolism , Female , Kidney Tubules/cytology , Male , Mice , Mice, Knockout , Mice, Transgenic , MicroRNAs/administration & dosage , Organ Specificity/genetics
7.
BMC Med Genomics ; 13(1): 60, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32252771

ABSTRACT

BACKGROUND: Despite the emergence of cell-free DNA (cfDNA) as a clinical biomarker in cancer, the tissue origins of cfDNA in healthy individuals have to date been inferred only by indirect and relative measurement methods, such as tissue-specific methylation and nucleosomal profiling. METHODS: We performed the first direct, absolute measurement of the tissue origins of cfDNA, using tissue-specific knockout mouse strains, in both healthy mice and following paracetamol (APAP) overdose. We then investigated the utility of total cfDNA and the percentage of liver-specific cfDNA as clinical biomarkers in patients presenting with APAP overdose. RESULTS: Analysis of cfDNA from healthy tissue-specific knockout mice showed that cfDNA originates predominantly from white and red blood cell lineages, with minor contribution from hepatocytes, and no detectable contribution from skeletal and cardiac muscle. Following APAP overdose in mice, total plasma cfDNA and the percentage fraction originating from hepatocytes increased by ~ 100 and ~ 19-fold respectively. Total cfDNA increased by an average of more than 236-fold in clinical samples from APAP overdose patients with biochemical evidence of liver injury, and 18-fold in patients without biochemically apparent liver injury. Measurement of liver-specific cfDNA, using droplet digital PCR and methylation analysis, revealed that the contribution of liver to cfDNA was increased by an average of 175-fold in APAP overdose patients with biochemically apparent liver injury compared to healthy subjects, but was not increased in overdose patients with normal liver function tests. CONCLUSIONS: We present a novel method for measurement of the tissue origins of cfDNA in healthy and disease states and demonstrate the potential of cfDNA as a clinical biomarker in APAP overdose.


Subject(s)
Acetaminophen/adverse effects , Analgesics, Non-Narcotic/adverse effects , Cell-Free Nucleic Acids/analysis , Chemical and Drug Induced Liver Injury/diagnosis , Drug Overdose/complications , Liver/metabolism , Animals , Case-Control Studies , Chemical and Drug Induced Liver Injury/etiology , Humans , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prognosis
8.
J Hepatol ; 73(2): 349-360, 2020 08.
Article in English | MEDLINE | ID: mdl-32169610

ABSTRACT

BACKGROUND & AIM: Following acetaminophen (APAP) overdose, acute liver injury (ALI) can occur in patients that present too late for N-acetylcysteine treatment, potentially leading to acute liver failure, systemic inflammation, and death. Macrophages influence the progression and resolution of ALI due to their innate immunological function and paracrine activity. Syngeneic primary bone marrow-derived macrophages (BMDMs) were tested as a cell-based therapy in a mouse model of APAP-induced ALI (APAP-ALI). METHODS: Several phenotypically distinct BMDM populations were delivered intravenously to APAP-ALI mice when hepatic necrosis was established, and then evaluated based on their effects on injury, inflammation, immunity, and regeneration. In vivo phagocytosis assays were used to interrogate the phenotype and function of alternatively activated BMDMs (AAMs) post-injection. Finally, primary human AAMs sourced from healthy volunteers were evaluated in immunocompetent APAP-ALI mice. RESULTS: BMDMs rapidly localised to the liver and spleen within 4 h of administration. Injection of AAMs specifically reduced hepatocellular necrosis, HMGB1 translocation, and infiltrating neutrophils following APAP-ALI. AAM delivery also stimulated proliferation in hepatocytes and endothelium, and reduced levels of several circulating proinflammatory cytokines within 24 h. AAMs displayed a high phagocytic activity both in vitro and in injured liver tissue post-injection. Crosstalk with the host innate immune system was demonstrated by reduced infiltrating host Ly6Chi macrophages in AAM-treated mice. Importantly, therapeutic efficacy was partially recapitulated using clinical-grade primary human AAMs in immunocompetent APAP-ALI mice, underscoring the translational potential of these findings. CONCLUSION: We identify that AAMs have value as a cell-based therapy in an experimental model of APAP-ALI. Human AAMs warrant further evaluation as a potential cell-based therapy for APAP overdose patients with established liver injury. LAY SUMMARY: After an overdose of acetaminophen (paracetamol), some patients present to hospital too late for the current antidote (N-acetylcysteine) to be effective. We tested whether macrophages, an injury-responsive leukocyte that can scavenge dead/dying cells, could serve as a cell-based therapy in an experimental model of acetaminophen overdose. Injection of alternatively activated macrophages rapidly reduced liver injury and reduced several mediators of inflammation. Macrophages show promise to serve as a potential cell-based therapy for acute liver injury.


Subject(s)
Acetaminophen/poisoning , Cell- and Tissue-Based Therapy/methods , Chemical and Drug Induced Liver Injury , Macrophages , Paracrine Communication/immunology , Animals , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cytokines/blood , Disease Models, Animal , Humans , Immunity, Innate , Intercellular Signaling Peptides and Proteins , Liver Regeneration/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Phagocytosis , Treatment Outcome
9.
Semin Liver Dis ; 39(4): 442-451, 2019 11.
Article in English | MEDLINE | ID: mdl-31242527

ABSTRACT

Liver failure arising from acute and chronic liver disease is an unmet clinical need that urgently requires novel therapeutic options in addition to orthotopic liver transplantation. Cell therapies offer new strategies to recover liver function through the reconstitution of healthy parenchyma and resolution of tissue pathology. Macrophages are professional phagocytes that comprise a key part of the innate immune system providing an important defense mechanism against invading pathogens. Macrophages are an inherently diverse cell type with respect to ontogeny, tissue distribution, phenotype, and function. The ability of macrophages to afford innate immunity, efficiently scavenge apoptotic/necrotic cells, and modulate local tissue microenvironment makes them an attractive cell therapy candidate for various diseases. This review aims to outline the rationale and utility of macrophages to serve as a potential cell therapy for liver disease.


Subject(s)
Cell- and Tissue-Based Therapy , Liver Diseases/therapy , Macrophages/cytology , Humans , Immunity, Innate , Liver Diseases/immunology
10.
Stem Cells Transl Med ; 8(3): 271-284, 2019 03.
Article in English | MEDLINE | ID: mdl-30394698

ABSTRACT

We describe a novel therapeutic approach for cirrhosis using mesenchymal stem cells (MSCs) and colony-stimulating factor-1-induced bone marrow-derived macrophages (id-BMMs) and analyze the mechanisms underlying fibrosis improvement and regeneration. Mouse MSCs and id-BMMs were cultured from mouse bone marrow and their interactions analyzed in vitro. MSCs, id-BMMs, and a combination therapy using MSCs and id-BMMs were administered to mice with CCl4 -induced cirrhosis. Fibrosis regression, liver regeneration, and liver-migrating host cells were evaluated. Administered cell behavior was also tracked by intravital imaging. In coculture, MSCs induced switching of id-BMMs toward the M2 phenotype with high phagocytic activity. In vivo, the combination therapy reduced liver fibrosis (associated with increased matrix metalloproteinases expression), increased hepatocyte proliferation (associated with increased hepatocyte growth factor, vascular endothelial growth factor, and oncostatin M in the liver), and reduced blood levels of liver enzymes, more effectively than MSCs or id-BMMs monotherapy. Intravital imaging showed that after combination cell administration, a large number of id-BMMs, which phagocytosed hepatocyte debris and were retained in the liver for more than 7 days, along with a few MSCs, the majority of which were trapped in the lung, migrated to the fibrotic area in the liver. Host macrophages and neutrophils infiltrated after combination therapy and contributed to liver fibrosis regression and promoted regeneration along with administered cells. Indirect effector MSCs and direct effector id-BMMs synergistically improved cirrhosis along with host cells in mice. These studies pave the way for new treatments for cirrhosis. Stem Cells Translational Medicine 2019;8:271&284.


Subject(s)
Liver Cirrhosis/therapy , Macrophages/cytology , Mesenchymal Stem Cells/cytology , Animals , Cell Proliferation/physiology , Cells, Cultured , Disease Models, Animal , Hepatocytes/physiology , Liver/physiology , Liver Regeneration/physiology , Male , Mesenchymal Stem Cell Transplantation/methods , Mice , Mice, Inbred C57BL , Neutrophils/physiology
11.
J Immunol ; 200(3): 1169-1187, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29263216

ABSTRACT

The disposal of apoptotic bodies by professional phagocytes is crucial to effective inflammation resolution. Our ability to improve the disposal of apoptotic bodies by professional phagocytes is impaired by a limited understanding of the molecular mechanisms that regulate the engulfment and digestion of the efferocytic cargo. Macrophages are professional phagocytes necessary for liver inflammation, fibrosis, and resolution, switching their phenotype from proinflammatory to restorative. Using sterile liver injury models, we show that the STAT3-IL-10-IL-6 axis is a positive regulator of macrophage efferocytosis, survival, and phenotypic conversion, directly linking debris engulfment to tissue repair.


Subject(s)
Interleukin-10/metabolism , Interleukin-6/metabolism , Liver Cirrhosis/pathology , Liver/injuries , Macrophages/immunology , Phagocytosis/immunology , STAT3 Transcription Factor/metabolism , Adoptive Transfer , Animals , Apoptosis/immunology , Humans , Liver/pathology , Macrophages/transplantation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Necrosis/immunology , Regeneration/physiology , Zebrafish/embryology
12.
Cytotherapy ; 19(4): 555-569, 2017 04.
Article in English | MEDLINE | ID: mdl-28214127

ABSTRACT

BACKGROUND AIMS: Tracking cells during regenerative cytotherapy is crucial for monitoring their safety and efficacy. Macrophages are an emerging cell-based regenerative therapy for liver disease and can be readily labeled for medical imaging. A reliable, clinically applicable cell-tracking agent would be a powerful tool to study cell biodistribution. METHODS: Using a recently described chemical design, we set out to functionalize, optimize and characterize a new set of superparamagnetic iron oxide nanoparticles (SPIONs) to efficiently label macrophages for magnetic resonance imaging-based cell tracking in vivo. RESULTS: A series of cell health and iron uptake assays determined that positively charged SPIONs (+16.8 mV) could safely label macrophages more efficiently than the formerly approved ferumoxide (-6.7 mV; Endorem) and at least 10 times more efficiently than the clinically approved SPION ferumoxytol (-24.2 mV; Rienso). An optimal labeling time of 4 h at 25 µg/mL was demonstrated to label macrophages of mouse and human origin without any adverse effects on cell viability whilst providing substantial iron uptake (>5 pg Fe/cell) that was retained for 7 days in vitro. SPION labeling caused no significant reduction in phagocytic activity and a shift toward a reversible M1-like phenotype in bone marrow-derived macrophages (BMDMs). Finally, we show that SPION-labeled BMDMs delivered via the hepatic portal vein to mice are localized in the hepatic parenchyma resulting in a 50% drop in T2* in the liver. Engraftment of exogenous cells was confirmed via immunohistochemistry up to 3 weeks posttransplantation. DISCUSSION: A positively charged dextran-coated SPION is a promising tool to noninvasively track hepatic macrophage localization for therapeutic monitoring.


Subject(s)
Cell Tracking/methods , Dextrans/chemistry , Iron/metabolism , Macrophages/cytology , Macrophages/metabolism , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Transplantation/methods , Cell Survival , Cells, Cultured , Dextrans/pharmacokinetics , Ferrosoferric Oxide/chemistry , Ferrosoferric Oxide/pharmacokinetics , Humans , Liver Cirrhosis/therapy , Male , Mice , Mice, Inbred C57BL , Tissue Distribution
13.
NPJ Regen Med ; 2: 14, 2017.
Article in English | MEDLINE | ID: mdl-29302350

ABSTRACT

Chronic liver injury can be caused by viral hepatitis, alcohol, obesity, and metabolic disorders resulting in fibrosis, hepatic scarring, and cirrhosis. Novel therapies are urgently required and previous work has demonstrated that treatment with bone marrow derived macrophages can improve liver regeneration and reduce fibrosis in a murine model of hepatic injury and fibrosis. Here, we describe a protocol whereby pure populations of therapeutic macrophages can be produced in vitro from murine embryonic stem cells on a large scale. Embryonic stem cell derived macrophages display comparable morphology and cell surface markers to bone marrow derived macrophages but our novel imaging technique revealed that their phagocytic index was significantly lower. Differences were also observed in their response to classical induction protocols with embryonic stem cell derived macrophages having a reduced response to lipopolysaccharide and interferon gamma and an enhanced response to IL4 compared to bone marrow derived macrophages. When their therapeutic potential was assessed in a murine, carbon tetrachloride-induced injury and fibrosis model, embryonic stem cell derived macrophages significantly reduced the amount of hepatic fibrosis to 50% of controls, down-regulated the number of fibrogenic myofibroblasts and activated liver progenitor cells. To our knowledge, this is the first study that demonstrates a therapeutic effect of macrophages derived in vitro from pluripotent stem cells in a model of liver injury. We also found that embryonic stem cell derived macrophages repopulated the Kupffer cell compartment of clodronate-treated mice more efficiently than bone marrow derived macrophages, and expressed comparatively lower levels of Myb and Ccr2, indicating that their phenotype is more comparable to tissue-resident rather than monocyte-derived macrophages.

14.
NPJ Regen Med ; 2: 28, 2017.
Article in English | MEDLINE | ID: mdl-29302362

ABSTRACT

Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.

15.
Biomarkers ; 22(5): 461-469, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27978773

ABSTRACT

CONTEXT: There is an ongoing search for specific and translational biomarkers of drug-induced liver injury (DILI). MicroRNA-122 (miR-122) has previously shown potential as a sensitive, specific, and translational biomarker of DILI in both rodent, and human studies. OBJECTIVE: To build on previous work within the field, we examined biomarker kinetics in a rat model of acetaminophen (APAP)-induced liver injury to confirm the sensitivity, and specificity of miR-122 and glutamate dehydrogenase (GLDH). MATERIALS AND METHODS: qRT-PCR and a standard enzymatic assay were used for biomarker analysis. RESULTS: Both miR-122 and GLDH were demonstrated to be more readily-detectable biomarkers of APAP-DILI than alanine aminotransferase (ALT). Peak levels for all biomarkers were detected at 2 days after APAP. At day 3, miR-122 had returned to baseline; however, other biomarkers remained elevated between 3 and 4 days. We were also able to demonstrate that, although miR-122 is present in greater quantities in exosome-free form, both exosome-bound and non-vesicle bound miR-122 are released in a similar profile throughout the course of DILI. DISCUSSION AND CONCLUSIONS: Together, this study demonstrates that both GLDH and miR-122 could be used during preclinical drug-development as complementary biomarkers to ALT to increase the chance of early detection of hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury/diagnosis , Acetaminophen , Alanine Transaminase , Animals , Biomarkers/blood , Early Diagnosis , Glutamate Dehydrogenase/blood , MicroRNAs/blood , Pharmacokinetics , Rats , Sensitivity and Specificity
16.
J Am Soc Nephrol ; 27(11): 3345-3355, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27020854

ABSTRACT

Extracellular vesicles (ECVs) facilitate intercellular communication along the nephron, with the potential to change the function of the recipient cell. However, it is not known whether this is a regulated process analogous to other signaling systems. We investigated the potential hormonal regulation of ECV transfer and report that desmopressin, a vasopressin analogue, stimulated the uptake of fluorescently loaded ECVs into a kidney collecting duct cell line (mCCDC11) and into primary cells. Exposure of mCCDC11 cells to ECVs isolated from cells overexpressing microRNA-503 led to downregulated expression of microRNA-503 target genes, but only in the presence of desmopressin. Mechanistically, ECV entry into mCCDC11 cells required cAMP production, was reduced by inhibiting dynamin, and was selective for ECVs from kidney tubular cells. In vivo, we measured the urinary excretion and tissue uptake of fluorescently loaded ECVs delivered systemically to mice before and after administration of the vasopressin V2 receptor antagonist tolvaptan. In control-treated mice, we recovered 2.5% of administered ECVs in the urine; tolvaptan increased recovery five-fold and reduced ECV deposition in kidney tissue. Furthermore, in a patient with central diabetes insipidus, desmopressin reduced the excretion of ECVs derived from glomerular and proximal tubular cells. These data are consistent with vasopressin-regulated uptake of ECVs in vivo We conclude that ECV uptake is a specific and regulated process. Physiologically, ECVs are a new mechanism of intercellular communication; therapeutically, ECVs may be a vehicle by which RNA therapy could be targeted to specific cells for the treatment of kidney disease.


Subject(s)
Extracellular Vesicles/physiology , Kidney Tubules, Collecting/cytology , Vasopressins/physiology , Adolescent , Animals , Deamino Arginine Vasopressin/pharmacology , Extracellular Vesicles/drug effects , Humans , Kidney Tubules, Collecting/ultrastructure , Male , Mice , Rats
17.
Toxicol Sci ; 144(1): 173-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25527335

ABSTRACT

Emerging hepatic models for the study of drug-induced toxicity include pluripotent stem cell-derived hepatocyte-like cells (HLCs) and complex hepatocyte-non-parenchymal cellular coculture to mimic the complex multicellular interactions that recapitulate the niche environment in the human liver. However, a specific marker of hepatocyte perturbation, required to discriminate hepatocyte damage from non-specific cellular toxicity contributed by non-hepatocyte cell types or immature differentiated cells is currently lacking, as the cytotoxicity assays routinely used in in vitro toxicology research depend on intracellular molecules which are ubiquitously present in all eukaryotic cell types. In this study, we demonstrate that microRNA-122 (miR-122) detection in cell culture media can be used as a hepatocyte-enriched in vitro marker of drug-induced toxicity in homogeneous cultures of hepatic cells, and a cell-specific marker of toxicity of hepatic cells in heterogeneous cultures such as HLCs generated from various differentiation protocols and pluripotent stem cell lines, where conventional cytotoxicity assays using generic cellular markers may not be appropriate. We show that the sensitivity of the miR-122 cytotoxicity assay is similar to conventional assays that measure lactate dehydrogenase activity and intracellular adenosine triphosphate when applied in hepatic models with high levels of intracellular miR-122, and can be multiplexed with other assays. MiR-122 as a biomarker also has the potential to bridge results in in vitro experiments to in vivo animal models and human samples using the same assay, and to link findings from clinical studies in determining the relevance of in vitro models being developed for the study of drug-induced liver injury.


Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/genetics , Diclofenac/toxicity , Embryonic Stem Cells/drug effects , Hepatocytes/drug effects , Induced Pluripotent Stem Cells/drug effects , MicroRNAs/genetics , Adenosine Triphosphate/metabolism , Aged , Cell Differentiation , Cell Survival/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Culture Media/metabolism , Dose-Response Relationship, Drug , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , Female , Genetic Markers , Hep G2 Cells , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , L-Lactate Dehydrogenase/metabolism , Male , MicroRNAs/metabolism , Middle Aged , Time Factors
18.
Expert Rev Clin Pharmacol ; 7(3): 349-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24694030

ABSTRACT

Drug-induced liver injury (DILI) is a common form of adverse drug reaction seen within the clinic. Sensitive, specific and non-invasive biomarkers of liver toxicity are required to help diagnose hepatotoxicity and also to identify safety liabilities during drug development. Limitations exist in the current gold standard DILI biomarkers: alanine aminotransferase is not liver-specific and therefore gives rise to false-positive signals. Interest has grown in the potential of microRNAs (miRNAs) as biomarkers of DILI. Some miRNAs display remarkable organ specificity, can be measured sensitively and are stable in a wide range of biofluids. However, little is currently known about the mechanisms through which miRNAs are released from cells. Furthermore, a clinically suitable method to measure miRNAs has not yet been developed. This review aims to highlight the current research surrounding these markers and areas in which further work is required to establish these markers within clinical and pre-clinical settings.


Subject(s)
Chemical and Drug Induced Liver Injury/blood , MicroRNAs/blood , Animals , Biomarkers/blood , Chemical and Drug Induced Liver Injury/genetics , Drug Evaluation, Preclinical , Exocytosis/drug effects , Exocytosis/genetics , Exosomes/drug effects , Exosomes/genetics , Humans , Liver Function Tests , MicroRNAs/genetics , Sensitivity and Specificity , Transcription, Genetic
19.
Zebrafish ; 11(3): 219-26, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24625211

ABSTRACT

Paracetamol is the commonest cause of acute liver failure in the Western world and biomarkers are needed that report early hepatotoxicity. The liver-enriched microRNA (miRNA), miR-122, is a promising biomarker currently being qualified in humans. For biomarker development and drug toxicity screening, the zebrafish has advantages over rodents; however, blood acquisition in this model remains technically challenging. We developed a method for collecting blood from the adult zebrafish by retro-orbital (RO) bleeding and compared it to the commonly used lateral incision method. The RO technique was more reliable in terms of the blood yield and minimum amount per fish. This new RO technique was used in a zebrafish model of paracetamol toxicity. Paracetamol induced dose-dependent increases in liver cell necrosis, serum alanine transaminase activity, and mortality. In situ hybridization localized expression of miR-122 to the cytoplasm of zebrafish hepatocytes. After collection by RO bleeding, serum miR-122 could be measured and this miRNA was substantially increased by paracetamol 24 h after exposure, an increase that was prevented by delayed (3 h poststart of paracetamol exposure) treatment with acetylcysteine. In summary, collection of blood by RO bleeding facilitated measurement of miR-122 in a zebrafish model of paracetamol hepatotoxicity. The zebrafish represents a new species for measurement of circulating miRNA biomarkers that are translational and can bridge between fish and humans.


Subject(s)
Blood Specimen Collection/veterinary , MicroRNAs/genetics , Zebrafish/genetics , Acetaminophen/toxicity , Animals , Hepatocytes/drug effects , Liver/drug effects , MicroRNAs/metabolism , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...