Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066421

ABSTRACT

The mouse paramyxovirus Sendai, which is capable of limited replication in human bronchial epithelial cells without causing disease, is well suited for the development of vector-based intranasal vaccines against respiratory infections, including SARS-CoV-2. Using the Moscow strain of the Sendai virus, we developed a vaccine construct, Sen-Sdelta(M), which expresses the full-length spike (S) protein of the SARS-CoV-2 delta variant. A single intranasal delivery of Sen-Sdelta(M) to Syrian hamsters and BALB/c mice induced high titers of virus-neutralizing antibodies specific to the SARS-CoV-2 delta variant. A significant T-cell response, as determined by IFN-γ ELISpot and ICS methods, was also demonstrated in the mouse model. Mice and hamsters vaccinated with Sen-Sdelta(M) were well protected against SARS-CoV-2 challenge. The viral load in the lungs and nasal turbinates, measured by RT-qPCR and TCID50 assay, decreased dramatically in vaccinated groups. The most prominent effect was revealed in a highly sensitive hamster model, where no tissue samples contained detectable levels of infectious SARS-CoV-2. These results indicate that Sen-Sdelta(M) is a promising candidate as a single-dose intranasal vaccine against SARS-CoV-2, including variants of concern.

2.
Vaccines (Basel) ; 12(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793789

ABSTRACT

The development of a safe and effective vaccine against avian influenza A virus (AIV) H5N8 is relevant due to the widespread distribution of this virus in the bird population and the existing potential risk of human infection, which can lead to significant public health concerns. Here, we developed an experimental pVAX-H5 DNA vaccine encoding a modified trimer of AIV H5N8 hemagglutinin. Immunization of BALB/c mice with pVAX-H5 using jet injection elicited high titer antibody response (the average titer in ELISA was 1 × 105), and generated a high level of neutralizing antibodies against H5N8 and T-cell response, as determined by ELISpot analysis. Both liquid and lyophilized forms of pVAX-H5 DNA vaccine provided 100% protection of immunized mice against lethal challenge with influenza A virus A/turkey/Stavropol/320-01/2020 (H5N8). The results obtained indicate that pVAX-H5 has good opportunities as a vaccine candidate against the influenza A virus (H5N8).

3.
Polymers (Basel) ; 15(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571096

ABSTRACT

Biomaterial-mediated, spatially localized gene delivery is important for the development of cell-populated scaffolds used in tissue engineering. Cells adhering to or penetrating into such a scaffold are to be transfected with a preloaded gene that induces the production of secreted proteins or cell reprogramming. In the present study, we produced silica nanoparticles-associated pDNA and electrospun scaffolds loaded with such nanoparticles, and studied the release of pDNA from scaffolds and cell-to-scaffold interactions in terms of cell viability and pDNA transfection efficacy. The pDNA-coated nanoparticles were characterized with dynamic light scattering and transmission electron microscopy. Particle sizes ranging from 56 to 78 nm were indicative of their potential for cell transfection. The scaffolds were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, stress-loading tests and interaction with HEK293T cells. It was found that the properties of materials and the pDNA released vary, depending on the scaffold's composition. The scaffolds loaded with pDNA-nanoparticles do not have a pronounced cytotoxic effect, and can be recommended for cell transfection. It was found that (pDNA-NPs) + PEI9-loaded scaffold demonstrates good potential for cell transfection. Thus, electrospun scaffolds suitable for the transfection of inhabiting cells are eligible for use in tissue engineering.

4.
Vaccines (Basel) ; 11(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37112720

ABSTRACT

Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)3, or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)3. Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.

5.
Pharmaceutics ; 14(11)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36365078

ABSTRACT

Vaccination against SARS-CoV-2 and other viral infections requires safe, effective, and inexpensive vaccines that can be rapidly developed. DNA vaccines are candidates that meet these criteria, but one of their drawbacks is their relatively weak immunogenicity. Electroporation (EP) is an effective way to enhance the immunogenicity of DNA vaccines, but because of the different configurations of the devices that are used for EP, it is necessary to carefully select the conditions of the procedure, including characteristics such as voltage, current strength, number of pulses, etc. In this study, we determined the optimal parameters for delivery DNA vaccine by electroporation using the BEX CO device. BALB/c mice were used as a model. Plasmid DNA phMGFP was intramuscular (I/M) injected into the quadriceps muscle of the left hind leg of animals using insulin syringes, followed by EP. As a result of the experiments, the following EP parameters were determined: direct and reverse polarity rectangular DC current in three pulses, 12 V voltage for 30 ms and 950 ms intervals, with a current limit of 45 mA. The selected protocol induced a low level of injury and provided a high level of GFP expression. The chosen protocol was used to evaluate the immunogenicity of the DNA vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 protein (pVAXrbd) injected by EP. It was shown that the delivery of pVAXrbd via EP significantly enhanced both specific humoral and cellular immune responses compared to the intramuscular injection of the DNA vaccine.

6.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: mdl-35891430

ABSTRACT

The conventional live smallpox vaccine based on the vaccinia virus (VACV) cannot be widely used today because it is highly reactogenic. Therefore, there is a demand for designing VACV variants possessing enhanced immunogenicity, making it possible to reduce the vaccine dose and, therefore, significantly eliminate the pathogenic effect of the VACV on the body. In this study, we analyzed the development of the humoral and T cell-mediated immune responses elicited by immunizing mice with low-dose VACV variants carrying the mutant A34R gene (which increases production of extracellular virions) or the deleted A35R gene (whose protein product inhibits antigen presentation by the major histocompatibility complex class II). The VACV LIVP strain, which is used as a smallpox vaccine in Russia, and its recombinant variants LIVP-A34R*, LIVP-dA35R, and LIVP-A34R*-dA35R, were compared upon intradermal immunization of BALB/c mice at a dose of 104 pfu/animal. The strongest T cell-mediated immunity was detected in mice infected with the LIVP-A34R*-dA35R virus. The parental LIVP strain induced a significantly lower antibody level compared to the strains carrying the modified A34R and A35R genes. Simultaneous modification of the A34R gene and deletion of the A35R gene in VACV LIVP synergistically enhanced the immunogenic properties of the LIVP-A34R*-dA35R virus.


Subject(s)
Smallpox Vaccine , Smallpox , Vaccinia , Animals , Mice , Mice, Inbred BALB C , Smallpox/prevention & control , Smallpox Vaccine/genetics , Vaccines, Attenuated/genetics , Vaccinia virus
7.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216301

ABSTRACT

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19 Vaccines/pharmacology , Immunity, Humoral/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Animals , Binding Sites , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Dextrans/chemistry , Female , HEK293 Cells , Humans , Mice, Inbred BALB C , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spermidine/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology , Vero Cells
8.
J Biomol Struct Dyn ; 40(7): 3196-3212, 2022 04.
Article in English | MEDLINE | ID: mdl-33222632

ABSTRACT

The polyepitope strategy is promising approach for successfully creating a broadly protective flu vaccine, which targets T-lymphocytes (both CD4+ and CD8+) to recognise the most conserved epitopes of viral proteins. In this study, we employed a computer-aided approach to develop several artificial antigens potentially capable of evoking immune responses to different virus subtypes. These antigens included conservative T-cell epitopes of different influenza A virus proteins. To design epitope-based antigens we used experimentally verified information regarding influenza virus T-cell epitopes from the Immune Epitope Database (IEDB) (http://www.iedb.org). We constructed two "human" and two "murine" variants of polyepitope antigens. Amino acid sequences of target polyepitope antigens were designed using our original TEpredict/PolyCTLDesigner software. Immunogenic and protective features of DNA constructs encoding "murine" target T-cell immunogens were studied in BALB/c mice. We showed that mice groups immunised with a combination of computer-generated "murine" DNA immunogens had a 37.5% survival rate after receiving a lethal dose of either A/California/4/2009 (H1N1) virus or A/Aichi/2/68 (H3N2) virus, while immunisation with live flu H1N1 and H3N2 vaccine strains provided protection against homologous viruses and failed to protect against heterologous viruses. These results demonstrate that mechanisms of cross-protective immunity may be associated with the stimulation of specific T-cell responses. This study demonstrates that our computer-aided approach may be successfully used for rational designing artificial polyepitope antigens capable of inducing virus-specific T-lymphocyte responses and providing partial protection against two different influenza virus subtypes.Communicated by Ramaswamy H. Sarma.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Animals , Antigens, Viral/genetics , Epitopes, T-Lymphocyte , Humans , Influenza A Virus, H3N2 Subtype , Mice , Mice, Inbred BALB C , T-Lymphocytes
9.
Viruses ; 13(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34452494

ABSTRACT

Mass vaccination has played a critical role in the global eradication of smallpox. Various vaccinia virus (VACV) strains, whose origin has not been clearly documented in most cases, have been used as live vaccines in different countries. These VACV strains differed in pathogenicity towards various laboratory animals and in reactogenicity exhibited upon vaccination of humans. In this work, we studied the development of humoral and cellular immune responses in BALB/c mice inoculated intranasally (i.n.) or intradermally (i.d.) with the VACV LIVP strain at a dose of 105 PFU/mouse, which was used in Russia as the first generation smallpox vaccine. Active synthesis of VACV-specific IgM in the mice occurred on day 7 after inoculation, reached a maximum on day 14, and decreased by day 29. Synthesis of virus-specific IgG was detected only from day 14, and the level increased significantly by day 29 after infection of the mice. Immunization (i.n.) resulted in significantly higher production of VACV-specific antibodies compared to that upon i.d. inoculation of LIVP. There were no significant differences in the levels of the T cell response in mice after i.n. or i.d. VACV administration at any time point. The maximum level of VACV-specific T-cells was detected on day 14. By day 29 of the experiment, the level of VACV-specific T-lymphocytes in the spleen of mice significantly decreased for both immunization procedures. On day 30 after immunization with LIVP, mice were infected with the cowpox virus at a dose of 46 LD50. The i.n. immunized mice were resistant to this infection, while 33% of i.d. immunized mice died. Our findings indicate that the level of the humoral immune response to vaccination may play a decisive role in protection of animals from orthopoxvirus reinfection.


Subject(s)
Adaptive Immunity , Cowpox virus/physiology , Cowpox/prevention & control , Reinfection/prevention & control , Vaccinia virus/immunology , Vaccinia/immunology , Viral Vaccines/administration & dosage , Animals , Antibodies, Viral/immunology , Cowpox/immunology , Cowpox/virology , Cowpox virus/genetics , Cowpox virus/immunology , Humans , Mice , Mice, Inbred BALB C , Reinfection/immunology , Reinfection/virology , T-Lymphocytes/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Vaccinia/virology , Vaccinia virus/genetics , Vaccinia virus/physiology , Viral Vaccines/immunology
10.
Vaccines (Basel) ; 9(5)2021 May 03.
Article in English | MEDLINE | ID: mdl-34063689

ABSTRACT

Nucleic acid-based influenza vaccines are a promising platform that have recently and rapidly developed. We previously demonstrated the immunogenicity of DNA vaccines encoding artificial immunogens AgH1, AgH3, and AgM2, which contained conserved fragments of the hemagglutinin stem of two subtypes of influenza A-H1N1 and H3N2-and conserved protein M2. Thus, the aim of this study was to design and characterize modified mRNA obtained using the above plasmid DNA vaccines as a template. To select the most promising protocol for creating highly immunogenic mRNA vaccines, we performed a comparative analysis of mRNA modifications aimed at increasing its translational activity and decreasing toxicity. We used mRNA encoding a green fluorescent protein (GFP) as a model. Eight mRNA-GFP variants with different modifications (M0-M7) were obtained using the classic cap(1), its chemical analog ARCA (anti-reverse cap analog), pseudouridine (Ψ), N6-methyladenosine (m6A), and 5-methylcytosine (m5C) in different ratios. Modifications M2, M6, and M7, which provided the most intensive fluorescence of transfected HEK293FT cells were used for template synthesis when mRNA encoded influenza immunogens AgH1, AgH3, and AgM2. Virus specific antibodies were registered in groups of animals immunized with a mix of mRNAs encoding AgH1, AgH3, and AgM2, which contained either ARCA (with inclusions of 100% Ψ and 20% m6A (M6)) or a classic cap(1) (with 100% substitution of U with Ψ (M7)). M6 modification was the least toxic when compared with other mRNA variants. M6 and M7 RNA modifications can therefore be considered as promising protocols for designing mRNA vaccines.

11.
Vaccines (Basel) ; 8(4)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271964

ABSTRACT

BACKGROUND: According to current data, an effective Ebola virus vaccine should induce both humoral and T-cell immunity. In this work, we focused our efforts on methods for delivering artificial T-cell immunogen in the form of a DNA vaccine, using generation 4 polyamidoamine dendrimers (PAMAM G4) and a polyglucin:spermidine conjugate (PG). METHODS: Optimal conditions were selected for obtaining complexes of previously developed DNA vaccines with cationic polymers. The sizes, mobility and surface charge of the complexes with PG and PAMAM 4G have been determined. The immunogenicity of the obtained vaccine constructs was investigated in BALB/c mice. RESULTS: It was shown that packaging of DNA vaccine constructs both in the PG envelope and the PAMAM 4G envelope results in an increase in their immunogenicity as compared with the group of mice immunized with the of vector plasmid pcDNA3.1 (a negative control). The highest T-cell responses were shown in mice immunized with complexes of DNA vaccines with PG and these responses significantly exceeded those in the groups of animals immunized with both the combination of naked DNAs and the combination DNAs coated with PAMAM 4G. In the group of animals immunized with complexes of the DNA vaccines with PAMAM 4G, no statistical differences were found in the ability to induce T-cell responses, as compared with the group of mice immunized with the combination of naked DNAs. CONCLUSIONS: The PG conjugate can be considered as a promising and safe means to deliver DNA-based vaccines. The use of PAMAM requires further optimization.

12.
Vaccines (Basel) ; 8(3)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784907

ABSTRACT

BACKGROUND: Development of a universal vaccine capable to induce antibody responses against a broad range of influenza virus strains attracts growing attention. Hemagglutinin stem and the exposed fragment of influenza virus M2 protein are promising targets for induction of cross-protective humoral and cell-mediated response, since they contain conservative epitopes capable to induce antibodies and cytotoxic T lymphocytes (CTLs) to a wide range of influenza virus subtypes. METHODS: In this study, we generated DNA vaccine constructs encoding artificial antigens AgH1, AgH3, and AgM2 designed on the basis of conservative hemagglutinin stem fragments of two influenza A virus subtypes, H1N1 and H3N2, and conservative M2 protein, and evaluate their immunogenicity and protective efficacy. To obtain DNA vaccine constructs, genes encoding the designed antigens were cloned into a pcDNA3.1 vector. Expression of the target genes in 293T cells transfected with DNA vaccine constructs has been confirmed by synthesis of specific mRNA. RESULTS: Immunization of BALB/c mice with DNA vaccines encoding these antigens was shown to evoke humoral and T-cell immune responses as well as a moderated statistically significant cross-protective effect against two heterologous viruses A/California/4/2009 (H1N1pdm09) and A/Aichi/2/68 (H3N2). CONCLUSIONS: The results demonstrate a potential approach to creating a universal influenza vaccine based on artificial antigens.

13.
Vaccines (Basel) ; 7(2)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934980

ABSTRACT

Background: The lack of effective vaccines against Ebola virus initiates a search for new approaches to overcoming this problem. The aim of the study was to design artificial polyepitope T-cell immunogens⁻⁻candidate DNA vaccines against Ebola virus and to evaluate their capacity to induce a specific immune response in a laboratory animal model. Method: Design of two artificial polyepitope T-cell immunogens, one of which (EV.CTL) includes cytotoxic and the other (EV.Th)⁻⁻T-helper epitopes of Ebola virus proteins was carried out using original TEpredict/PolyCTLDesigner software. Synthesized genes were cloned in pcDNA3.1 plasmid vector. Target gene expression was estimated by synthesis of specific mRNAs and proteins in cells transfected with recombinant plasmids. Immunogenicity of obtained DNA vaccine constructs was evaluated according to their capacity to induce T-cell response in BALB/c mice using IFNγ ELISpot and ICS. Results: We show that recombinant plasmids pEV.CTL and pEV.Th encoding artificial antigens provide synthesis of corresponding mRNAs and proteins in transfected cells, as well as induce specific responses both to CD4+ and CD8+ T-lymphocytes in immunized animals. Conclusions: The obtained recombinant plasmids can be regarded as promising DNA vaccine candidates in future studies of their capacity to induce cytotoxic and protective responses against Ebola virus.

14.
Bioinformatics ; 31(12): i53-61, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26072509

ABSTRACT

UNLABELLED: The analysis of concentrations of circulating antibodies in serum (antibody repertoire) is a fundamental, yet poorly studied, problem in immunoinformatics. The two current approaches to the analysis of antibody repertoires [next generation sequencing (NGS) and mass spectrometry (MS)] present difficult computational challenges since antibodies are not directly encoded in the germline but are extensively diversified by somatic recombination and hypermutations. Therefore, the protein database required for the interpretation of spectra from circulating antibodies is custom for each individual. Although such a database can be constructed via NGS, the reads generated by NGS are error-prone and even a single nucleotide error precludes identification of a peptide by the standard proteomics tools. Here, we present the IgRepertoireConstructor algorithm that performs error-correction of immunosequencing reads and uses mass spectra to validate the constructed antibody repertoires. AVAILABILITY AND IMPLEMENTATION: IgRepertoireConstructor is open source and freely available as a C++ and Python program running on all Unix-compatible platforms. The source code is available from http://bioinf.spbau.ru/igtools. CONTACT: ppevzner@ucsd.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Antibodies/genetics , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Immunoglobulins/analysis , Proteome/analysis , Sequence Analysis, DNA/methods , Software , Databases, Factual , Humans , Mass Spectrometry/methods , Peptide Fragments/analysis
15.
F1000Res ; 2: 258, 2013.
Article in English | MEDLINE | ID: mdl-25110578

ABSTRACT

We present C-Sibelia, a highly accurate and easy-to-use software tool for comparing two closely related bacterial genomes, which can be presented as either finished sequences or fragmented assemblies. C-Sibelia takes as input two FASTA files and produces: (1) a VCF file containing all identified single nucleotide variations and indels; (2) an XMFA file containing alignment information. The software also produces Circos diagrams visualizing high level genomic architecture for rearrangement analyses. C-Sibelia is a part of the Sibelia comparative genomics suite, which is freely available under the GNU GPL v.2 license at http://sourceforge.net/projects/sibelia-bio. C-Sibelia is compatible with Unix-like operating systems. A web-based version of the software is available at http://etool.me/software/csibelia.

16.
J Transl Med ; 9: 10, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-21244679

ABSTRACT

BACKGROUND: Mesenchymal stem cells derived from adipose tissue (ADSC) are multipotent stem cells, originated from the vascular-stromal compartment of fat tissue. ADSC are used as an alternative cell source for many different cell therapies, however in ischemic cardiovascular diseases the therapeutic benefit was modest. One of the reasons could be the use of autologous aged ADSC, which recently were found to have impaired functions. We therefore analysed the effects of age on age markers and angiogenic properties of ADSC. Hypoxic conditioning was investigated as a form of angiogenic stimulation. METHODS: ADSC were harvested from young (1-3 month), adult (12 month) and aged (18-24 month) mice and cultured under normoxic (20%) and hypoxic (1%) conditions for 48 h. Differences in proliferation, apoptosis and telomere length were assessed in addition to angiogenic properties of ADSC. RESULTS: Proliferation potential and telomere length were decreased in aged ADSC compared to young ADSC. Frequency of apoptotic cells was higher in aged ADSC. Gene expression of pro-angiogenic factors including vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and hepatic growth factor (HGF) were down-regulated with age, which could be restored by hypoxia. Transforming growth factor (TGF-ß) increased in the old ADSC but was reduced by hypoxia.Expression of anti-angiogenic factors including thrombospondin-1 (TBS1) and plasminogen activator inhibitor-1 (PAI-1) did increase in old ADSC, but could be reduced by hypoxic stimulation. Endostatin (ENDS) was the highest in aged ADSC and was also down-regulated by hypoxia. We noted higher gene expression of proteases system factors like urokinase-type plasminogen activator receptor (uPAR), matrix metalloproteinases (MMP2 and MMP9) and PAI-1 in aged ADSC compared to young ADSC, but they decreased in old ADSC. Tube formation on matrigel was higher in the presence of conditioned medium from young ADSC in comparison to aged ADSC. CONCLUSIONS: ADSC isolated from older animals show changes, including impaired proliferation and angiogenic stimulation. Angiogenic gene expression can be partially be improved by hypoxic preconditioning, however the effect is age-dependent. This supports the hypothesis that autologous ADSC from aged subjects might have an impaired therapeutic potential.


Subject(s)
Adipose Tissue/cytology , Cellular Senescence/physiology , Mesenchymal Stem Cells/physiology , Neovascularization, Physiologic/physiology , Adipose Tissue/metabolism , Aging/physiology , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cells, Cultured , Cellular Senescence/genetics , HeLa Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , Nitric Oxide/metabolism , Oxygen/pharmacology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL