Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Atherosclerosis ; 371: 1-13, 2023 04.
Article in English | MEDLINE | ID: mdl-36940535

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is a systemic and chronic inflammatory disease propagated by monocytes and macrophages. Yet, our knowledge on how transcriptome of these cells evolves in time and space is limited. We aimed at characterizing gene expression changes in site-specific macrophages and in circulating monocytes during the course of atherosclerosis. METHODS: We utilized apolipoprotein E-deficient mice undergoing one- and six-month high cholesterol diet to model early and advanced atherosclerosis. Aortic macrophages, peritoneal macrophages, and circulating monocytes from each mouse were subjected to bulk RNA-sequencing (RNA-seq). We constructed a comparative directory that profiles lesion- and disease stage-specific transcriptomic regulation of the three cell types in atherosclerosis. Lastly, the regulation of one gene, Gpnmb, whose expression positively correlated with atheroma growth, was validated using single-cell RNA-seq (scRNA-seq) of atheroma plaque from murine and human. RESULTS: The convergence of gene regulation between the three investigated cell types was surprisingly low. Overall 3245 differentially expressed genes were involved in the biological modulation of aortic macrophages, among which less than 1% were commonly regulated by the remote monocytes/macrophages. Aortic macrophages regulated gene expression most actively during atheroma initiation. Through complementary interrogation of murine and human scRNA-seq datasets, we showcased the practicality of our directory, using the selected gene, Gpnmb, whose expression in aortic macrophages, and a subset of foamy macrophages in particular, strongly correlated with disease advancement during atherosclerosis initiation and progression. CONCLUSIONS: Our study provides a unique toolset to explore gene regulation of macrophage-related biological processes in and outside the atheromatous plaque at early and advanced disease stages.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Humans , Mice , Apolipoproteins E , Atherosclerosis/genetics , Atherosclerosis/metabolism , Macrophages/metabolism , Membrane Glycoproteins , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Plaque, Atherosclerotic/metabolism , Transcriptome
2.
Basic Res Cardiol ; 117(1): 61, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36383299

ABSTRACT

AIMS: P-selectin is an activatable adhesion molecule on platelets promoting platelet aggregation, and platelet-leukocyte complex (PLC) formation. Increased numbers of PLC are circulating in the blood of patients shortly after acute myocardial infarction and predict adverse outcomes. These correlations led to speculations about whether PLC may represent novel therapeutic targets. We therefore set out to elucidate the pathomechanistic relevance of PLC in myocardial ischemia and reperfusion injury. METHODS AND RESULTS: By generating P-selectin deficient bone marrow chimeric mice, the post-myocardial infarction surge in PLC numbers in blood was prevented. Yet, intravital microscopy, flow cytometry and immunohistochemical staining, echocardiography, and gene expression profiling showed unequivocally that leukocyte adhesion to the vessel wall, leukocyte infiltration, and myocardial damage post-infarction were not altered in response to the lack in PLC. CONCLUSION: We conclude that myocardial infarction associated sterile inflammation triggers PLC formation, reminiscent of conserved immunothrombotic responses, but without PLC influencing myocardial ischemia and reperfusion injury in return. Our experimental data do not support a therapeutic concept of selectively targeting PLC formation in myocardial infarction.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Reperfusion Injury , Mice , Animals , P-Selectin/metabolism , Myocardial Reperfusion Injury/metabolism , Leukocytes , Myocardial Infarction/metabolism , Reperfusion Injury/metabolism , Myocardial Ischemia/metabolism
3.
Basic Res Cardiol ; 115(6): 78, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33296022

ABSTRACT

Statins induce plaque regression characterized by reduced macrophage content in humans, but the underlying mechanisms remain speculative. Studying the translational APOE*3-Leiden.CETP mouse model with a humanized lipoprotein metabolism, we find that systemic cholesterol lowering by oral atorvastatin or dietary restriction inhibits monocyte infiltration, and reverses macrophage accumulation in atherosclerotic plaques. Contrary to current believes, none of (1) reduced monocyte influx (studied by cell fate mapping in thorax-shielded irradiation bone marrow chimeras), (2) enhanced macrophage egress (studied by fluorescent bead labeling and transfer), or (3) atorvastatin accumulation in murine or human plaque (assessed by mass spectrometry) could adequately account for the observed loss in macrophage content in plaques that undergo phenotypic regression. Instead, suppression of local proliferation of macrophages dominates phenotypic plaque regression in response to cholesterol lowering: the lower the levels of serum LDL-cholesterol and lipid contents in murine aortic and human carotid artery plaques, the lower the rates of in situ macrophage proliferation. Our study identifies macrophage proliferation as the predominant turnover determinant and an attractive target for inducing plaque regression.


Subject(s)
Atherosclerosis/therapy , Atorvastatin/pharmacology , Cell Proliferation/drug effects , Cholesterol, LDL/blood , Diet, Fat-Restricted , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Macrophages/drug effects , Plaque, Atherosclerotic , Animals , Apolipoprotein E3/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biomarkers/blood , Cholesterol Ester Transfer Proteins/genetics , Disease Models, Animal , Down-Regulation , Female , Humans , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Mice, Knockout, ApoE , Receptors, LDL/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...