Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 175: 116654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692066

ABSTRACT

This paper explores the therapeutic perspectives of polyphenols and chitosan as potential anticancer agents in the mouthwash formulations. Taking into account the high incidence of squamous cell carcinoma (SCC) among oral cancers, this discussion will concentrate on the potential advantages of these compounds in oral care, focusing on their impact on improving oral health and cancer prevention. According to the data, it appears that the mixture of BACs extract and chitosan may increase the efficiency of the apoptosis of cancer cells while reducing the undesired side effects. The cytotoxicity assays demonstrate a significant reduction in squamous carcinoma cell viability after incubation with BACs extract, with a marked decrease observed over 24-72 hours up to 76%. The anti-cancer properties of the BAC extract are related to luteolin, which is a predominant compound. The addition of 0.025% chitosan reduced the metabolic activity of cancer cells by 37.5%, suggesting a synergistic interaction between the compounds. This research highlights the potential of BACs and chitosan in modulating important molecular targets associated with cancer cell.


Subject(s)
Chitosan , Mouth Neoplasms , Mouthwashes , Oral Health , Polyphenols , Chitosan/chemistry , Chitosan/pharmacology , Humans , Polyphenols/pharmacology , Mouthwashes/pharmacology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/prevention & control , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Apoptosis/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/prevention & control , Carcinoma, Squamous Cell/pathology , Drug Compounding
2.
J Hazard Mater ; 465: 133000, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38029585

ABSTRACT

Plastics make our lives easier in many ways; however, if they are not appropriately disposed of or recycled, they may end up in the environment where they stay for centuries and degrade into smaller and smaller pieces, called microplastics. Each year, approximately 42000 tonnes of microplastics end up in the environment when products containing them are used. According to the European Chemicals Agency (ECHA) one of the significant sources of microplastics are microcapsules formulated in home care and consumer care products. As part of the EU's plastics strategy, ECHA has proposed new regulations to ban intentionally added microplastics starting from 2022. It means that the current cross-linked microcapsules widely applied in consumer goods must be transformed into biodegradable shell capsules. The aim of this review is to provide the readers with a comprehensive and in-depth understanding of recent developments in the art of microencapsulation. Thus, considering the chemical structure of the capsule shell's materials, we discuss whether microcapsules should also be categorized as microplastic and therefore, feared and avoided or whether they should be used despite the persisting concern.

3.
Dent Med Probl ; 60(4): 709-739, 2023.
Article in English | MEDLINE | ID: mdl-38100083

ABSTRACT

This paper presents the major achievements in the field of biomaterials in restorative dentistry and tissue regeneration reported over the past 3 years. The review aims to summarize the knowledge on important biomaterials and the emerging modification strategies to improve their biointegration, biological activity, mechanical properties, and resistance to the harsh oral environment. We also discuss the main opportunities and challenges associated with the use of biomaterials in dentistry.Much contemporary research focuses on the interactions between biomaterials and the surrounding tissues in the oral environment regarding adhesion, associated stresses and strains, and the durability of dental restoration materials. Dental biomaterials should support cell adhesion and activity, leading to dental tissue regeneration, and are also expected to effectively prevent bacterial infections and inhibit material corrosion in saliva. The degradation, dissolution or corrosion of restorative materials due to exposure to body fluids can alter the structure and mechanical properties of the material, causing various adverse effects.Another aspect addressed in recent literature is the improvement of the mechanical properties and esthetics of restorative materials. The surfaces of biomaterials are usually modified with polymers or nanomaterials to reduce friction while maintaining biocompatibility.Although all modern biomaterials are promising, there is an urgent need for more in vivo and clinical studies to investigate their biological advantages and disadvantages in detail. The computational techniques used to assess the properties of modern dental materials, particularly the mechanical ones, could assist in the development of the materials. Such an approach can help bring new biomaterials to the market by reducing complicated, tedious and expensive experimentation.


Subject(s)
Biocompatible Materials , Tooth , Humans , Biocompatible Materials/chemistry , Esthetics, Dental , Dentistry , Saliva
4.
Molecules ; 28(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37764463

ABSTRACT

Nanotechnology has ushered in a new era of medical innovation, offering unique solutions to longstanding healthcare challenges. Among nanomaterials, copper and copper oxide nanoparticles stand out as promising candidates for a multitude of medical applications. This article aims to provide contemporary insights into the perspectives and challenges regarding the use of copper and copper oxide nanoparticles in medicine. It summarises the biomedical potential of copper-based nanoformulations, including the progress of early-stage research, to evaluate and mitigate the potential toxicity of copper nanomaterials. The discussion covers the challenges and prospects of copper-based nanomaterials in the context of their successful clinical translation. The article also addresses safety concerns, emphasizing the need for toxicity assessments of nanomedicines. However, attention is needed to solve the current challenges such as biocompatibility and controlled release. Ongoing research and collaborative efforts to overcome these obstacles are discussed. This analysis aims to provide guidance for the safe and effective integration of copper nanoparticles into clinical practice, thereby advancing their medical applications. This analysis of recent literature has highlighted the multifaceted challenges and prospects associated with copper-based nanomaterials in the context of their translation from the laboratory to the clinic. In particular, biocompatibility remains a formidable hurdle, requiring innovative solutions to ensure the seamless integration into the human body. Additionally, achieving the controlled release of therapeutic agents from copper nanoparticles poses a complex challenge that requires meticulous engineering and precise design.


Subject(s)
Copper , Nanoparticles , Humans , Delayed-Action Preparations , Oxides
5.
Article in English | MEDLINE | ID: mdl-36901614

ABSTRACT

The rapid advances in science and technology in the field of artificial neural networks have led to noticeable interest in the application of this technology in medicine. Given the need to develop medical sensors that monitor vital signs to meet both people's needs in real life and in clinical research, the use of computer-based techniques should be considered. This paper describes the latest progress in heart rate sensors empowered by machine learning methods. The paper is based on a review of the literature and patents from recent years, and is reported according to the PRISMA 2020 statement. The most important challenges and prospects in this field are presented. Key applications of machine learning are discussed in medical sensors used for medical diagnostics in the area of data collection, processing, and interpretation of results. Although current solutions are not yet able to operate independently, especially in the diagnostic context, it is likely that medical sensors will be further developed using advanced artificial intelligence methods.


Subject(s)
Artificial Intelligence , Medicine , Humans , Machine Learning , Neural Networks, Computer
6.
Bioorg Chem ; 114: 105036, 2021 09.
Article in English | MEDLINE | ID: mdl-34120021

ABSTRACT

Immobilized enzymes find applications in many areas such as pharmacy, medicine, food production and environmental protection. However, protecting these biocatalysts against harsh reaction conditions and retaining their enzymatic activity even after several biocatalytic cycles are major challenges. Properly selected supports and type of surface modifier therefore seem to be crucial for achieving high retention of catalytic activity of immobilized biomolecules. Here we propose production of novel composite electrospun fibers from polystyrene/poly(d,l-lactide-co-glycolide) (PS/PDLG) and its application as a support for immobilization of oxidoreductases such as alcohol dehydrogenase (ADH) and laccase (LAC). Two strategies of covalent binding, (i) (3-aminopropyl)triethoxysilane (APTES) with glutaraldehyde (GA) and (ii) polydopamine (PDA), were applied to attach oxidoreductases to PS/PDLG. The average fiber diameter was shown to increase from 1.252 µm to even 3.367 µm after enzyme immobilization. Effective production of PS/PDLG fibers and biomolecule attachment were confirmed by Fourier transform infrared spectroscopy analysis. The highest substrate conversion efficiency was observed at pH 6.5 and 5 for ADH and LAC, respectively, and at 25 °C for enzymes attached using the APTES + GA approach. Improvement of enzyme stabilization at high temperatures was confirmed in that relative activities of enzymes immobilized onto PS/PDLG fibers were over 20% higher than those of the free biomolecules, and enzyme leaching from the support using acetate and MES buffers was below 10 mg/g.


Subject(s)
Enzymes, Immobilized/chemistry , Oxidoreductases/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polystyrenes/chemistry , Benzothiazoles/chemistry , Biocatalysis , Formaldehyde/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Protein Stability , Sulfonic Acids/chemistry , Temperature
7.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188560, 2021 08.
Article in English | MEDLINE | ID: mdl-33965512

ABSTRACT

According to World Health Organization (WHO) cancer is the second most important cause of death globally. Because angiogenesis is considered as an essential process of growth, proliferation and tumor progression, within this review we decided to shade light on recent development of chemical compounds which play a significant role in its imaging and monitoring. Indeed, the review gives insight about the current achievements of active agents structures involved in imaging techniques such as: positron emission computed tomography (PET), magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT), as well as combination PET/MRI and PET/CT. The review aims to provide the journal audience with a comprehensive and in-deep understanding of chemistry policy in tumor angiogenesis imaging.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Neoplasms/blood supply , Neoplasms/diagnostic imaging , Neovascularization, Pathologic , Positron-Emission Tomography , Radiopharmaceuticals , Angiogenesis Inhibitors/therapeutic use , Animals , Humans , Neoplasms/drug therapy , Positron Emission Tomography Computed Tomography , Predictive Value of Tests , Tomography, Emission-Computed, Single-Photon
8.
Int J Biol Macromol ; 165(Pt B): 2049-2059, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33086111

ABSTRACT

Composite polycaprolactone-chitosan material was produced by an electrospinning method and used as a support for immobilization of tyrosinase by mixed ionic interactions and hydrogen bonds formation. The morphology of the fibers and enzyme deposition were confirmed by SEM images. Further, multivariate polynomial regression was used to model the experimental data and to determine optimal conditions for immobilization process, which were found to be pH 7, temperature 25 °C and 16 h process duration. Under these conditions, novel type of biocatalytic system was produced with immobilization yield of 93% and expressed activity of 95%. Furthermore, as prepared system was applied in batch experiments related to biodegradation of bisphenol A under various remediation conditions. It was found that over 80% of the pollutant was removed after 120 min of the process, in the temperature range 15-45 °C and pH 6-9, using solutions at concentration up to 3 mg/L. Experimental data collected proved that the stability and reusability of the tyrosinase were significantly improved upon immobilization: the immobilized biomolecule retained around 90% of its initial activity after 30 days of storage, and was still capable to remove over 80% of bisphenol A even after 10 repeated uses. By contrast, free enzyme was able to remove over 80% of bisphenol A at pH 7-8 and temperature range 15-35 °C, and retained less than 60% of its initial activity after 30 days of storage.


Subject(s)
Benzhydryl Compounds/isolation & purification , Chitosan/chemistry , Enzymes, Immobilized/metabolism , Monophenol Monooxygenase/metabolism , Phenols/isolation & purification , Polyesters/chemistry , Agaricales/enzymology , Biodegradation, Environmental , Enzymes, Immobilized/ultrastructure , Hydrogen-Ion Concentration , Monophenol Monooxygenase/ultrastructure , Spectroscopy, Fourier Transform Infrared
9.
Bioorg Chem ; 93: 102747, 2019 12.
Article in English | MEDLINE | ID: mdl-30739714

ABSTRACT

Enzymatic cofactor-dependent conversion of monosaccharides can be used in the bioproduction of value-added compounds. In this study, we demonstrate co-immobilization of xylose dehydrogenase (XDH, EC 1.1.1.175) and alcohol dehydrogenase (ADH, EC 1.1.1.1) using magnetite-silica core-shell particles for simultaneous conversion of xylose into xylonic acid (XA) and in situ cofactor regeneration. The reaction conditions were optimized by factorial design, and were found to be: XDH:ADH ratio 2:1, temperature 25 °C, pH 7, and process duration 60 min. Under these conditions enzymatic production of xylonic acid exceeded 4.1 mM and was more than 25% higher than in the case of a free enzymes system. Moreover, the pH and temperature tolerance as well as the thermo- and storage stability of the co-immobilized enzymes were significantly enhanced. Co-immobilized XDH and ADH make it possible to obtain higher xylonic acid concentration over broad ranges of pH (6-8) and temperature (15-35 °C) as compared to free enzymes, and retained over 60% of their initial activity after 20 days of storage. In addition, the half-life of the co-immobilized system was 4.5 times longer, and the inactivation constant (kD = 0.0141 1/min) four times smaller, than those of the free biocatalysts (kD = 0.0046 1/min). Furthermore, after five reaction cycles, immobilized XDH and ADH retained over 65% of their initial properties, with a final biocatalytic productivity of 1.65 mM of xylonic acid per 1 U of co-immobilized XDH. The results demonstrate the advantages of the use of co-immobilized enzymes over a free enzyme system in terms of enhanced activity and stability.


Subject(s)
Alcohol Dehydrogenase/metabolism , Alcohol Oxidoreductases/metabolism , Coenzymes/metabolism , Xylose/analogs & derivatives , Xylose/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Oxidoreductases/chemistry , Coenzymes/chemistry , Enzymes, Immobilized , Hydrogen-Ion Concentration , Temperature , Xylose/chemistry
10.
J Surfactants Deterg ; 19: 297-314, 2016.
Article in English | MEDLINE | ID: mdl-26949330

ABSTRACT

The paper presents a new model for kinetically controlled adsorption at the fluid/fluid interface. The main purpose of the presented approach is to relate easy to estimate bulk surfactant concentration with Gibbs surface excess. Two adsorption isotherms are involved in the new model development: Frumkin and Szyszkowski isotherms. Additionally the Johannsen time profile of concentration in the adsorption layer is assumed and estimated in the model derivation. The proposed approach assumes the near interface, adsorptive layer which is described based on Fick's transient diffusion law. The solution to the model contains the estimation of effective diffusivities with adsorptive layer thickness as well. The experimental results of toluene/water + sodium dodecyl sulfate are presented and used for model verification.

SELECTION OF CITATIONS
SEARCH DETAIL