Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 269, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191550

ABSTRACT

Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process. In the internodular compartment, we identify proliferating cerebellar granular neuronal precursor-like malignant cells, along with stromal, vascular, and immune cells. In contrast, the nodular compartment comprises postmitotic, neuronally differentiated malignant cells. Both compartments are connected through an intermediate cell stage resembling actively migrating CGNPs. Notably, we also discover astrocytic-like malignant cells, found in proximity to migrating and differentiated cells at the transition zone between the two compartments. Our study sheds light on the spatial tissue organization and its link to the developmental trajectory, resulting in a more benign tumor phenotype. This integrative approach holds promise to explore intercompartmental interactions in other cancers with varying histology.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/genetics , Cell Differentiation , Cerebellar Neoplasms/genetics , Disease Progression , Histological Techniques
2.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35745613

ABSTRACT

Desorption/ionization (DI)-mass spectrometric (MS) methods offer considerable advantages of rapidity and low-sample input for the analysis of solid biological matrices such as tissue sections. The concept of desorption electrospray ionization (DESI) offers the possibility to ionize compounds from solid surfaces at atmospheric pressure, without the addition of organic compounds to initiate desorption. However, severe drawbacks from former DESI hardware stability made the development of assays for drug quantification difficult. In the present study, the potential of new prototype source setups (High Performance DESI Sprayer and Heated Transfer Line) for the development of drug quantification assays in tissue sections was evaluated. It was demonstrated that following dedicated optimization, new DESI XS enhancements present promising options regarding targeted quantitative analyses. As a model compound for these developments, ulixertinib, an inhibitor of extracellular signal-regulated kinase (ERK) 1 and 2 was used.

3.
Cancer Cell ; 39(3): 407-422.e13, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33545065

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is an aggressive childhood tumor of the brainstem with currently no curative treatment available. The vast majority of DIPGs carry a histone H3 mutation leading to a lysine 27-to-methionine exchange (H3K27M). We engineered human induced pluripotent stem cells (iPSCs) to carry an inducible H3.3-K27M allele in the endogenous locus and studied the effects of the mutation in different disease-relevant neural cell types. H3.3-K27M upregulated bivalent promoter-associated developmental genes, producing diverse outcomes in different cell types. While being fatal for iPSCs, H3.3-K27M increased proliferation in neural stem cells (NSCs) and to a lesser extent in oligodendrocyte progenitor cells (OPCs). Only NSCs gave rise to tumors upon induction of H3.3-K27M and TP53 inactivation in an orthotopic xenograft model recapitulating human DIPGs. In NSCs, H3.3-K27M leads to maintained expression of stemness and proliferative genes and a premature activation of OPC programs that together may cause tumor initiation.


Subject(s)
Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/parasitology , Glioma/genetics , Glioma/pathology , Histones/genetics , Induced Pluripotent Stem Cells/pathology , Neural Stem Cells/pathology , Animals , Cell Line , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID
4.
Genes Dev ; 34(17-18): 1161-1176, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32820036

ABSTRACT

Medulloblastoma is a malignant childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH) subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs), and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional corepressor BCOR are recurrent and enriched in SHH medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9-10 ) in GNPs during development. This mutation leads to reduced expression of C-terminally truncated BCOR (BCORΔE9-10). While BcorΔE9-10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9-10 combined with loss of the SHH receptor gene Ptch1 resulted in fully penetrant medulloblastomas. In Ptch1+/- ;BcorΔE9-10 tumors, the growth factor gene Igf2 was aberrantly up-regulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/- GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/- ;BcorΔE9-10 tumors. Overall, our data suggests that BCOR-PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.


Subject(s)
Cerebellar Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Hedgehog Proteins/metabolism , Medulloblastoma/genetics , Polycomb-Group Proteins/metabolism , Repressor Proteins/genetics , Animals , Carcinogenesis/genetics , Disease Models, Animal , Hedgehog Proteins/genetics , Humans , Mice , Mutation , Patched-1 Receptor/genetics , Polycomb-Group Proteins/genetics , Repressor Proteins/metabolism , Sequence Deletion
5.
J Am Soc Mass Spectrom ; 31(3): 742-751, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-31971791

ABSTRACT

Ion mobility spectrometry (IMS) represents a considerable asset for analytics of complex samples as it allows for rapid mass spectrometric separation of compounds. IMS is even more useful for the separation of isobaric compounds when classical separation methods such as liquid chromatography or electrophoresis cannot be used, e.g., during matrix-assisted laser desorption/ionization (MALDI) analyses of biological surfaces. In the present study, we proved the usefulness of IMS for pharmacological applications of MALDI analyses on tissue sections. To illustrate our proof-of-concept, we used the anthelmintic drug mebendazole (MBZ) as a model. Using this exemplary drug, we demonstrated the possibility of using ion mobility to discriminate a drug in tissues from the biological background that masked its signal at low concentrations. In this proof-of-concept, the IMS mode together with the use of a profiling approach for sample preparation enabled quantification of the model drug MBZ from tissue sections in the concentration range 5 to 5,000 ng/g and with a limit of detection of 1 ng/g of tissue, within 2 h. This study highlights the importance of IMS as a separation method for on-surface quantification of drugs in tissue sections.


Subject(s)
Anthelmintics/pharmacokinetics , Mebendazole/pharmacokinetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Anthelmintics/analysis , Ion Mobility Spectrometry/economics , Ion Mobility Spectrometry/methods , Mebendazole/analysis , Mice, Nude , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/economics , Time Factors , Tissue Distribution
6.
Neuro Oncol ; 21(7): 867-877, 2019 07 11.
Article in English | MEDLINE | ID: mdl-30943283

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive pediatric brain tumors that are characterized by a recurrent mutation (K27M) within the histone H3 encoding genes H3F3A and HIST1H3A/B/C. These mutations have been shown to induce a global reduction in the repressive histone modification H3K27me3, which together with widespread changes in DNA methylation patterns results in an extensive transcriptional reprogramming hampering the identification of single therapeutic targets based on a molecular rationale. METHODS: We applied a large-scale gene knockdown approach using a pooled short hairpin (sh)RNA library in combination with next-generation sequencing in order to identify DIPG-specific vulnerabilities. The therapeutic potential of specific inhibitors of candidate targets was validated in a secondary drug screen. RESULTS: We identified fibroblast growth factor receptor (FGFR) signaling and the serine/threonine protein phosphatase 2A (PP2A) as top depleted hits in patient-derived DIPG cell cultures and validated their lethal potential by FGF ligand depletion and genetic knockdown of the PP2A structural subunit PPP2R1A. Further, pharmacological inhibition of FGFR and PP2A signaling through ponatinib and LB-100 treatment, respectively, exhibited strong tumor-specific anti-proliferative and apoptotic activity in cultured DIPG cells. CONCLUSIONS: Our findings suggest FGFR and PP2A signaling as potential new therapeutic targets for the treatment of DIPGs.


Subject(s)
Biomarkers, Tumor/genetics , Brain Stem Neoplasms/genetics , Diffuse Intrinsic Pontine Glioma/genetics , Protein Kinase Inhibitors/pharmacology , Protein Phosphatase 2/antagonists & inhibitors , RNA, Small Interfering/genetics , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Apoptosis , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/pathology , Cell Proliferation , DNA Methylation , Diffuse Intrinsic Pontine Glioma/drug therapy , Diffuse Intrinsic Pontine Glioma/pathology , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Library , High-Throughput Screening Assays , Humans , Protein Phosphatase 2/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...