Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(1): 102729, 2023 01.
Article in English | MEDLINE | ID: mdl-36410439

ABSTRACT

Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase that plays a major role in developmental processes and metabolism. The dysregulation of FGFR1 through genetic aberrations leads to skeletal and metabolic diseases as well as cancer. For this reason, FGFR1 is a promising therapeutic target, yet a very challenging one due to potential on-target toxicity. More puzzling is that both agonistic and antagonistic FGFR1 antibodies are reported to exhibit similar toxicity profiles in vivo, namely weight loss. In this study, we aimed to assess and compare the mechanism of action of these molecules to better understand this apparent contradiction. By systematically comparing the binding of these antibodies and the activation or the inhibition of the major FGFR1 signaling events, we demonstrated that the molecules displayed similar properties and can behave either as an agonist or antagonist depending on the presence or the absence of the endogenous ligand. We further demonstrated that these findings translated in xenografts mice models. In addition, using time-resolved FRET and mass spectrometry analysis, we showed a functionally distinct FGFR1 active conformation in the presence of an antibody that preferentially activates the FGFR substrate 2 (FRS2)-dependent signaling pathway, demonstrating that modulating the geometry of a FGFR1 dimer can effectively change the signaling outputs and ultimately the activity of the molecule in preclinical studies. Altogether, our results highlighted how bivalent antibodies can exhibit both agonistic and antagonistic activities and have implications for targeting other receptor tyrosine kinases with antibodies.


Subject(s)
Antibodies, Monoclonal , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Animals , Humans , Mice , Neoplasms , Receptor, Fibroblast Growth Factor, Type 1/agonists , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology
2.
Nature ; 528(7580): 127-31, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26580007

ABSTRACT

Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.


Subject(s)
Antibodies/therapeutic use , Cell Transdifferentiation , Lung/cytology , Lung/metabolism , Receptors, Notch/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/immunology , Calcium-Binding Proteins/metabolism , Cell Death/drug effects , Cell Division/drug effects , Cell Lineage/drug effects , Cell Tracking , Cell Transdifferentiation/drug effects , Cilia/metabolism , Disease Models, Animal , Female , Goblet Cells/cytology , Goblet Cells/drug effects , Goblet Cells/pathology , Homeostasis/drug effects , Humans , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Jagged-2 Protein , Ligands , Lung/drug effects , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Serrate-Jagged Proteins , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...