Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 207(2): 493-504, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34215653

ABSTRACT

The availability of Ags on the surface of tumor cells is crucial for the efficacy of cancer immunotherapeutic approaches using large molecules, such as T cell bispecific Abs (TCBs). Tumor Ags are processed through intracellular proteasomal protein degradation and are displayed as peptides on MHC class I (MHC I). Ag recognition through TCRs on the surface of CD8+ T cells can elicit a tumor-selective immune response. In this article, we show that proteolysis-targeting chimeras (PROTACs) that target bromo- and extraterminal domain proteins increase the abundance of the corresponding target-derived peptide Ags on MHC I in both liquid and solid tumor-derived human cell lines. This increase depends on the engagement of the E3 ligase to bromo- and extraterminal domain protein. Similarly, targeting of a doxycycline-inducible Wilms tumor 1 (WT1)-FKBP12F36V fusion protein, by a mutant-selective FKBP12F36V degrader, increases the presentation of WT1 Ags in human breast cancer cells. T cell-mediated response directed against cancer cells was tested on treatment with a TCR-like TCB, which was able to bridge human T cells to a WT1 peptide displayed on MHC I. FKBP12F36V degrader treatment increased the expression of early and late activation markers (CD69, CD25) in T cells; the secretion of granzyme ß, IFN-γ, and TNF-α; and cancer cell killing in a tumor-T cell coculture model. This study supports harnessing targeted protein degradation in tumor cells, for modulation of T cell effector function, by investigating for the first time, to our knowledge, the potential of combining a degrader and a TCB in a cancer immunotherapy setting.


Subject(s)
Antibodies, Bispecific/immunology , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Chimera/immunology , Histocompatibility Antigens Class I/immunology , Lymphocyte Activation/immunology , Neoplasms/immunology , Antigens, Neoplasm/immunology , Biomarkers, Tumor/immunology , Cell Line, Tumor , Epitopes, T-Lymphocyte/immunology , Humans , Proteolysis , Receptors, Antigen, T-Cell/immunology
2.
Nat Commun ; 12(1): 708, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514724

ABSTRACT

We report the development of a platform of dual targeting Fab (DutaFab) molecules, which comprise two spatially separated and independent binding sites within the human antibody CDR loops: the so-called H-side paratope encompassing HCDR1, HCDR3 and LCDR2, and the L-side paratope encompassing LCDR1, LCDR3 and HCDR2. Both paratopes can be independently selected and combined into the desired bispecific DutaFabs in a modular manner. X-ray crystal structures illustrate that DutaFabs are able to bind two target molecules simultaneously at the same Fv region comprising a VH-VL heterodimer. In the present study, this platform is applied to generate DutaFabs specific for VEGFA and PDGF-BB, which show high affinities, physico-chemical stability and solubility, as well as superior efficacy over anti-VEGF monotherapy in vivo. These molecules exemplify the usefulness of DutaFabs as a distinct class of antibody therapeutics, which is currently being evaluated in patients.


Subject(s)
Antibodies, Bispecific/pharmacology , Choroidal Neovascularization/drug therapy , Drug Development/methods , Immunoglobulin Fab Fragments/pharmacology , Protein Engineering , Amino Acid Sequence/genetics , Animals , Antibodies, Bispecific/genetics , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/ultrastructure , Becaplermin/antagonists & inhibitors , Binding Sites, Antibody/genetics , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/therapeutic use , Immunoglobulin Fab Fragments/ultrastructure , Inhibitory Concentration 50 , Intravitreal Injections , Male , Models, Molecular , Proof of Concept Study , Protein Conformation , Rats , Vascular Endothelial Growth Factor A/antagonists & inhibitors
3.
MAbs ; 8(1): 1-9, 2016.
Article in English | MEDLINE | ID: mdl-26716992

ABSTRACT

An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a -mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies.


Subject(s)
Antibodies , Animals , Humans , Terminology as Topic
4.
Clin Cancer Res ; 15(9): 3094-102, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19383823

ABSTRACT

PURPOSE: Antimitotic chemotherapy remains a cornerstone of multimodality treatment for locally advanced and metastatic cancers. To identify novel mitosis-specific agents with higher selectivity than approved tubulin-binding agents (taxanes, Vinca alkaloids), we have generated inhibitors of Polo-like kinase 1, a target that functions predominantly in mitosis. EXPERIMENTAL DESIGN: The first compound in this series, suitable for i.v. administration, has entered clinical development. To fully explore the potential of Polo-like kinase 1 inhibition in oncology, we have profiled additional compounds and now describe a novel clinical candidate. RESULTS: BI 6727 is a highly potent (enzyme IC(50) = 0.87 nmol/L, EC(50) = 11-37 nmol/L on a panel of cancer cell lines) and selective dihydropteridinone with distinct properties. First, BI 6727 has a pharmacokinetic profile favoring sustained exposure of tumor tissues with a high volume of distribution and a long terminal half-life in mice (V(ss) = 7.6 L/kg, t(1/2) = 46 h) and rats (V(ss) = 22 L/kg, t(1/2) = 54 h). Second, BI 6727 has physicochemical and pharmacokinetic properties that allow in vivo testing of i.v. as well as oral formulations, adding flexibility to dosing schedules. Finally, BI 6727 shows marked antitumor activity in multiple cancer models, including a model of taxane-resistant colorectal cancer. With oral and i.v. routes of administration, the total weekly dose of BI 6727 is most relevant for efficacy, supporting the use of a variety of well-tolerated dosing schedules. CONCLUSION: These findings warrant further investigation of BI 6727 as a tailored antimitotic agent; clinical studies have been initiated.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Cell Cycle Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/pharmacology , Pteridines/pharmacokinetics , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Blotting, Western , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Female , Fluorescent Antibody Technique , Forkhead Transcription Factors/physiology , Humans , Immunoenzyme Techniques , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Nude , Protein Conformation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/chemistry , Rats , Rats, Wistar , Tissue Distribution , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
5.
Curr Biol ; 17(4): 316-22, 2007 Feb 20.
Article in English | MEDLINE | ID: mdl-17291758

ABSTRACT

Fine-mapping of the cell-division cycle, notably the identification of mitotic kinase signaling pathways, provides novel opportunities for cancer-drug discovery. As a key regulator of multiple steps during mitotic progression across eukaryotic species, the serine/threonine-specific Polo-like kinase 1 (Plk1) is highly expressed in malignant cells and serves as a negative prognostic marker in specific human cancer types . Here, we report the discovery of a potent small-molecule inhibitor of mammalian Plk1, BI 2536, which inhibits Plk1 enzyme activity at low nanomolar concentrations. The compound potently causes a mitotic arrest and induces apoptosis in human cancer cell lines of diverse tissue origin and oncogenome signature. BI 2536 inhibits growth of human tumor xenografts in nude mice and induces regression of large tumors with well-tolerated intravenous dose regimens. In treated tumors, cells arrest in prometaphase, accumulate phosphohistone H3, and contain aberrant mitotic spindles. This mitotic arrest is followed by a surge in apoptosis, detectable by immunohistochemistry and noninvasive optical and magnetic resonance imaging. For addressing the therapeutic potential of Plk1 inhibition, BI 2536 has progressed into clinical studies in patients with locally advanced or metastatic cancers.


Subject(s)
Apoptosis/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle/physiology , Enzyme Inhibitors/pharmacology , Neoplasms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/pharmacology , Signal Transduction/physiology , Animals , Body Weight , Cell Cycle Proteins/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/metabolism , Female , Flow Cytometry , HeLa Cells , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Mice , Microscopy, Fluorescence , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/metabolism , Spectrometry, Fluorescence , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
6.
Curr Biol ; 17(4): 304-15, 2007 Feb 20.
Article in English | MEDLINE | ID: mdl-17291761

ABSTRACT

BACKGROUND: The mitotic kinases, Cdk1, Aurora A/B, and Polo-like kinase 1 (Plk1) have been characterized extensively to further understanding of mitotic mechanisms and as potential targets for cancer therapy. Cdk1 and Aurora kinase studies have been facilitated by small-molecule inhibitors, but few if any potent Plk1 inhibitors have been identified. RESULTS: We describe the cellular effects of a novel compound, BI 2536, a potent and selective inhibitor of Plk1. The fact that BI 2536 blocks Plk1 activity fully and instantaneously enabled us to study controversial and unknown functions of Plk1. Cells treated with BI 2536 are delayed in prophase but eventually import Cdk1-cyclin B into the nucleus, enter prometaphase, and degrade cyclin A, although BI 2536 prevents degradation of the APC/C inhibitor Emi1. BI 2536-treated cells lack prophase microtubule asters and thus polymerize mitotic microtubules only after nuclear-envelope breakdown and form monopolar spindles that do not stably attach to kinetochores. Mad2 accumulates at kinetochores, and cells arrest with an activated spindle-assembly checkpoint. BI 2536 prevents Plk1's enrichment at kinetochores and centrosomes, and when added to metaphase cells, it induces detachment of microtubules from kinetochores and leads to spindle collapse. CONCLUSIONS: Our results suggest that Plk1's accumulation at centrosomes and kinetochores depends on its own activity and that this activity is required for maintaining centrosome and kinetochore function. Our data also show that Plk1 is not required for prophase entry, but delays transition to prometaphase, and that Emi1 destruction in prometaphase is not essential for APC/C-mediated cyclin A degradation.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Enzyme Inhibitors/pharmacology , F-Box Proteins/metabolism , Microtubules/drug effects , Mitosis/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/pharmacology , Spindle Apparatus/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/metabolism , HeLa Cells , Humans , Image Processing, Computer-Assisted , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Microtubules/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/metabolism , Spindle Apparatus/metabolism , Polo-Like Kinase 1
7.
Biochem J ; 401(1): 29-38, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17040210

ABSTRACT

Hormones and growth factors induce the activation of a number of protein kinases that belong to the AGC subfamily, including isoforms of PKA, protein kinase B (also known as Akt), PKC, S6K p70 (ribosomal S6 kinase), RSK (p90 ribosomal S6 kinase) and MSK (mitogen- and stress-activated protein kinase), which then mediate many of the physiological processes that are regulated by these extracellular agonists. It can be difficult to assess the individual functions of each AGC kinase because their substrate specificities are similar. Here we describe the small molecule BI-D1870, which inhibits RSK1, RSK2, RSK3 and RSK4 in vitro with an IC(50) of 10-30 nM, but does not signi-ficantly inhibit ten other AGC kinase members and over 40 other protein kinases tested at 100-fold higher concentrations. BI-D1870 is cell permeant and prevents the RSK-mediated phorbol ester- and EGF (epidermal growth factor)-induced phosphoryl-ation of glycogen synthase kinase-3beta and LKB1 in human embry-onic kidney 293 cells and Rat-2 cells. In contrast, BI-D1870 does not affect the agonist-triggered phosphorylation of substrates for six other AGC kinases. Moreover, BI-D1870 does not suppress the phorbol ester- or EGF-induced phosphorylation of CREB (cAMP-response-element-binding protein), consistent with the genetic evidence indicating that MSK, and not RSK, isoforms mediate the mitogen-induced phosphorylation of this transcription factor.


Subject(s)
Enzyme Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Pteridines/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Animals , Cell Line , Chromones/pharmacology , Enzyme Activation , Humans , Kinetics , Morpholines/pharmacology , Protein Kinase Inhibitors/pharmacology , Rats , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...