Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
bioRxiv ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37961137

ABSTRACT

Mutations in microRNA-96 ( MIR96 ) cause dominant delayed onset hearing loss DFNA50 without treatment. Genome editing has shown efficacy in hearing recovery by intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications. Here, we developed an editing therapy for a C>A point mutation in the seed region of the Mir96 gene, Mir96 14C>A associated with hearing loss by screening gRNAs for genome editors and optimizing Cas9 and sgRNA scaffold for efficient and specific mutation editing in vitro. By AAV delivery in pre-symptomatic (3-week-old) and symptomatic (6-week-old) adult Mir96 14C>A mutant mice, hair cell on-target editing significantly improved hearing long-term, with an efficacy inversely correlated with injection age. We achieved transient Cas9 expression without the evidence of AAV genomic integration to significantly reduce the safety concerns associated with editing. We developed an AAV-sgmiR96-master system capable of targeting all known human MIR96 mutations. As mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lays the foundation for future treatment of DFNA50 caused by MIR96 mutations.

2.
PLoS Genet ; 19(11): e1011058, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38011198

ABSTRACT

Adult-onset progressive hearing loss is a common, complex disease with a strong genetic component. Although to date over 150 genes have been identified as contributing to human hearing loss, many more remain to be discovered, as does most of the underlying genetic diversity. Many different variants have been found to underlie adult-onset hearing loss, but they tend to be rare variants with a high impact upon the gene product. It is likely that combinations of more common, lower impact variants also play a role in the prevalence of the disease. Here we present our exome study of hearing loss in a cohort of 532 older adult volunteers with extensive phenotypic data, including 99 older adults with normal hearing, an important control set. Firstly, we carried out an outlier analysis to identify genes with a high variant load in older adults with hearing loss compared to those with normal hearing. Secondly, we used audiometric threshold data to identify individual variants which appear to contribute to different threshold values. We followed up these analyses in a second cohort. Using these approaches, we identified genes and variants linked to better hearing as well as those linked to worse hearing. These analyses identified some known deafness genes, demonstrating proof of principle of our approach. However, most of the candidate genes are novel associations with hearing loss. While the results support the suggestion that genes responsible for severe deafness may also be involved in milder hearing loss, they also suggest that there are many more genes involved in hearing which remain to be identified. Our candidate gene lists may provide useful starting points for improved diagnosis and drug development.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Humans , Aged , Hearing Loss, Sensorineural/genetics , Exome Sequencing , Hearing Loss/genetics , Hearing , Deafness/genetics , Pedigree , Mutation
3.
Proc Natl Acad Sci U S A ; 120(34): e2307355120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37552762

ABSTRACT

Hearing loss is highly heterogeneous, but one common form involves a failure to maintain the local ionic environment of the sensory hair cells reflected in a reduced endocochlear potential. We used a genetic approach to ask whether this type of pathology can be reversed, using the Spns2tm1a mouse mutant known to show this defect. By activating Spns2 gene transcription at different ages after the onset of hearing loss, we found that an existing auditory impairment can be reversed to give close to normal thresholds for an auditory brainstem response (ABR), at least at low to mid stimulus frequencies. Delaying the activation of Spns2 led to less effective recovery of ABR thresholds, suggesting that there is a critical period for intervention. Early activation of Spns2 not only led to improvement in auditory function but also to protection of sensory hair cells from secondary degeneration. The genetic approach we have used to establish that this type of hearing loss is in principle reversible could be extended to many other diseases using available mouse resources.


Subject(s)
Anion Transport Proteins , Genetic Therapy , Hearing Loss , Animals , Mice , Hearing Loss/genetics , Hearing Loss/pathology , Hearing Loss/therapy , Anion Transport Proteins/genetics , Transcriptional Activation , Cochlear Microphonic Potentials , Hair Cells, Auditory/pathology
4.
EMBO Mol Med ; 15(10): e17393, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37642150

ABSTRACT

Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X-linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg ), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno-associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease.

5.
Dis Model Mech ; 16(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37165931

ABSTRACT

Non-syndromic sensorineural hearing loss (SNHL) is the most common sensory disorder, and it presents a high genetic heterogeneity. As part of our clinical genetic studies, we ascertained a previously unreported mutation in CCDC50 [c.828_858del, p.(Asp276Glufs*40)] segregating with hearing impairment in a Spanish family with SNHL associated with the autosomal dominant deafness locus DFNA44, which is predicted to disrupt protein function. To gain insight into the mechanism behind DFNA44 mutations, we analysed two Ccdc50 presumed loss-of-function mouse mutants, which showed normal hearing thresholds up to 6 months of age, indicating that haploinsufficiency is unlikely to be the pathogenic mechanism. We then carried out in vitro studies on a set of artificial mutants and on the p.(Asp276Glufs*40) and p.(Phe292Hisfs*37) human mutations, and determined that only the mutants containing the six-amino-acid sequence CLENGL as part of their aberrant protein tail showed an abnormal distribution consisting of perinuclear aggregates of the CCDC50 protein (also known as Ymer). Therefore, we conclude that the CLENGL sequence is necessary to form these aggregates. Taken together, the in vivo and in vitro results obtained in this study suggest that the two identified mutations in CCDC50 exert their effect through a dominant-negative or gain-of-function mechanism rather than by haploinsufficiency.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss , Humans , Animals , Mice , Hearing Loss, Sensorineural/genetics , Hearing Loss/genetics , Frameshift Mutation , Mutation/genetics , Pedigree , Intracellular Signaling Peptides and Proteins/genetics
6.
medRxiv ; 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37163093

ABSTRACT

Adult-onset progressive hearing loss is a common, complex disease with a strong genetic component. Although to date over 150 genes have been identified as contributing to human hearing loss, many more remain to be discovered, as does most of the underlying genetic diversity. Many different variants have been found to underlie adult-onset hearing loss, but they tend to be rare variants with a high impact upon the gene product. It is likely that combinations of more common, lower impact variants also play a role in the prevalence of the disease. Here we present our exome study of hearing loss in a cohort of 532 older adult volunteers with extensive phenotypic data, including 99 older adults with normal hearing, an important control set. Firstly, we carried out an outlier analysis to identify genes with a high variant load in older adults with hearing loss compared to those with normal hearing. Secondly, we used audiometric threshold data to identify individual variants which appear to contribute to different threshold values. We followed up these analyses in a second cohort. Using these approaches, we identified genes and variants linked to better hearing as well as those linked to worse hearing. These analyses identified some known deafness genes, demonstrating proof of principle of our approach. However, most of the candidate genes are novel associations with hearing loss. While the results support the suggestion that genes responsible for severe deafness may also be involved in milder hearing loss, they also suggest that there are many more genes involved in hearing which remain to be identified. Our candidate gene lists may provide useful starting points for improved diagnosis and drug development.

7.
PLoS One ; 18(1): e0273586, 2023.
Article in English | MEDLINE | ID: mdl-36689403

ABSTRACT

Diaphanous related formins are regulatory cytoskeletal protein involved in actin elongation and microtubule stabilization. In humans, defects in two of the three diaphanous genes (DIAPH1 and DIAPH3) have been associated with different types of hearing loss. Here, we investigate the role of the third member of the family, DIAPH2, in nonsyndromic hearing loss, prompted by the identification, by exome sequencing, of a predicted pathogenic missense variant in DIAPH2. This variant occurs at a conserved site and segregated with nonsyndromic X-linked hearing loss in an Italian family. Our immunohistochemical studies indicated that the mouse ortholog protein Diaph2 is expressed during development in the cochlea, specifically in the actin-rich stereocilia of the sensory outer hair cells. In-vitro studies showed a functional impairment of the mutant DIAPH2 protein upon RhoA-dependent activation. Finally, Diaph2 knock-out and knock-in mice were generated by CRISPR/Cas9 technology and auditory brainstem response measurements performed at 4, 8 and 14 weeks. However, no hearing impairment was detected. Our findings indicate that DIAPH2 may play a role in the inner ear; further studies are however needed to clarify the contribution of DIAPH2 to deafness.


Subject(s)
Actins , Hearing Loss , Humans , Mice , Animals , Formins/metabolism , Hair Cells, Auditory, Outer/metabolism
8.
Cells ; 11(20)2022 10 13.
Article in English | MEDLINE | ID: mdl-36291074

ABSTRACT

Peroxisome biogenesis disorders (due to PEX gene mutations) are associated with symptoms that range in severity and can lead to early childhood death, but a common feature is hearing impairment. In this study, mice carrying Pex3 mutations were found to show normal auditory development followed by an early-onset progressive increase in auditory response thresholds. The only structural defect detected in the cochlea at four weeks old was the disruption of synapses below inner hair cells. A conditional approach was used to establish that Pex3 expression is required locally within the cochlea for normal hearing, rather than hearing loss being due to systemic effects. A lipidomics analysis of the inner ear revealed a local reduction in plasmalogens in the Pex3 mouse mutants, comparable to the systemic plasmalogen reduction reported in human peroxisome biogenesis disorders. Thus, mice with Pex3 mutations may be a useful tool to understand the physiological basis of peroxisome biogenesis disorders.


Subject(s)
Ear, Inner , Hearing Loss , Animals , Child, Preschool , Humans , Mice , Ear, Inner/metabolism , Hearing/physiology , Hearing Loss/genetics , Hearing Loss/metabolism , Lipoproteins/metabolism , Membrane Proteins/metabolism , Mutation/genetics , Peroxins/genetics , Plasmalogens
9.
BMC Biol ; 20(1): 150, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35761239

ABSTRACT

BACKGROUND: Age-related hearing loss is a common, heterogeneous disease with a strong genetic component. More than 100 loci have been reported to be involved in human hearing impairment to date, but most of the genes underlying human adult-onset hearing loss remain unknown. Most genetic studies have focussed on very rare variants (such as family studies and patient cohort screens) or very common variants (genome-wide association studies). However, the contribution of variants present in the human population at intermediate frequencies is hard to quantify using these methods, and as a result, the landscape of variation associated with adult-onset hearing loss remains largely unknown. RESULTS: Here we present a study based on exome sequencing and self-reported hearing difficulty in the UK Biobank, a large-scale biomedical database. We have carried out variant load analyses using different minor allele frequency and impact filters, and compared the resulting gene lists to a manually curated list of nearly 700 genes known to be involved in hearing in humans and/or mice. An allele frequency cutoff of 0.1, combined with a high predicted variant impact, was found to be the most effective filter setting for our analysis. We also found that separating the participants by sex produced markedly different gene lists. The gene lists obtained were investigated using gene ontology annotation, functional prioritisation and expression analysis, and this identified good candidates for further study. CONCLUSIONS: Our results suggest that relatively common as well as rare variants with a high predicted impact contribute to age-related hearing impairment and that the genetic contributions to adult hearing difficulty may differ between the sexes. Our manually curated list of deafness genes is a useful resource for candidate gene prioritisation in hearing loss.


Subject(s)
Genome-Wide Association Study , Presbycusis , Aged , Animals , Biological Specimen Banks , Hearing , Humans , Mice , Self Report , United Kingdom
10.
Proc Natl Acad Sci U S A ; 119(26): e2204084119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35727972

ABSTRACT

Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report on DNA variants in MINAR2, encoding membrane integral NOTCH2-associated receptor 2, in four families underlying autosomal recessive nonsyndromic deafness. Neurologic evaluation of affected individuals at ages ranging from 4 to 80 y old does not show additional abnormalities. MINAR2 is a recently annotated gene with limited functional understanding. We detected three MINAR2 variants, c.144G > A (p.Trp48*), c.412_419delCGGTTTTG (p.Arg138Valfs*10), and c.393G > T, in 13 individuals with congenital- or prelingual-onset severe-to-profound sensorineural hearing loss (HL). The c.393G > T variant is shown to disrupt a splice donor site. We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. Mice with loss of function of the Minar2 protein (Minar2tm1b/tm1b) present with rapidly progressive sensorineural HL associated with a reduction in outer hair cell stereocilia in the shortest row and degeneration of hair cells at a later age. We conclude that MINAR2 is essential for hearing in humans and mice and its disruption leads to sensorineural HL. Progressive HL observed in mice and in some affected individuals and as well as relative preservation of hair cells provides an opportunity to interfere with HL using genetic therapies.


Subject(s)
Hearing Loss, Sensorineural , Receptor, Notch2 , Receptors, Cell Surface , Animals , Hearing Loss, Sensorineural/genetics , Humans , Loss of Function Mutation , Mice , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Receptors, Cell Surface/genetics , Stereocilia/metabolism
11.
BMC Biol ; 20(1): 67, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35296311

ABSTRACT

BACKGROUND: Mice carrying targeted mutations are important for investigating gene function and the role of genes in disease, but off-target mutagenic effects associated with the processes of generating targeted alleles, for instance using Crispr, and culturing embryonic stem cells, offer opportunities for spontaneous mutations to arise. Identifying spontaneous mutations relies on the detection of phenotypes segregating independently of targeted alleles, and having a broad estimate of the level of mutations generated by intensive breeding programmes is difficult given that many phenotypes are easy to miss if not specifically looked for. Here we present data from a large, targeted knockout programme in which mice were analysed through a phenotyping pipeline. Such spontaneous mutations segregating within mutant lines may confound phenotypic analyses, highlighting the importance of record-keeping and maintaining correct pedigrees. RESULTS: Twenty-five lines out of 1311 displayed different deafness phenotypes that did not segregate with the targeted allele. We observed a variety of phenotypes by Auditory Brainstem Response (ABR) and behavioural assessment and isolated eight lines showing early-onset severe progressive hearing loss, later-onset progressive hearing loss, low frequency hearing loss, or complete deafness, with vestibular dysfunction. The causative mutations identified include deletions, insertions, and point mutations, some of which involve new genes not previously associated with deafness while others are new alleles of genes known to underlie hearing loss. Two of the latter show a phenotype much reduced in severity compared to other mutant alleles of the same gene. We investigated the ES cells from which these lines were derived and determined that only one of the 8 mutations could have arisen in the ES cell, and in that case, only after targeting. Instead, most of the non-segregating mutations appear to have occurred during breeding of mutant mice. In one case, the mutation arose within the wildtype colony used for expanding mutant lines. CONCLUSIONS: Our data show that spontaneous mutations with observable effects on phenotype are a common side effect of intensive breeding programmes, including those underlying targeted mutation programmes. Such spontaneous mutations segregating within mutant lines may confound phenotypic analyses, highlighting the importance of record-keeping and maintaining correct pedigrees.


Subject(s)
Deafness , Hearing Loss , Alleles , Animals , Deafness/genetics , Hearing Loss/genetics , Mice , Mutagenesis , Mutation
12.
PLoS One ; 17(3): e0261530, 2022.
Article in English | MEDLINE | ID: mdl-35235570

ABSTRACT

Tasmanian devil (tde) mice are deaf and exhibit circling behaviour. Sensory hair cells of mutants show disorganised hair bundles with abnormally thin stereocilia. The origin of this mutation is the insertion of a transgene which disrupts expression of the Grxcr1 (glutaredoxin cysteine rich 1) gene. We report here that Grxcr1 exons and transcript sequences are not affected by the transgene insertion in tde homozygous (tde/tde) mice. Furthermore, 5'RACE PCR experiments showed the presence of two different transcripts of the Grxcr1 gene, expressed in both tde/tde and in wild-type controls. However, quantitative analysis of Grxcr1 transcripts revealed a significantly decreased mRNA level in tde/tde mice. The key stereociliary proteins ESPN, MYO7A, EPS8 and PTPRQ were distributed in hair bundles of homozygous tde mutants in a similar pattern compared with control mice. We found that the abnormal morphology of the stereociliary bundle was associated with a reduction in the size and Ca2+-sensitivity of the mechanoelectrical transducer (MET) current. We propose that GRXCR1 is key for the normal growth of the stereociliary bundle prior to the onset of hearing, and in its absence hair cells are unable to mature into fully functional sensory receptors.


Subject(s)
Hair Cells, Auditory
13.
Sci Rep ; 12(1): 2444, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165318

ABSTRACT

Cell cycle associated protein 1 (Caprin1) is an RNA-binding protein that can regulate the cellular post-transcriptional response to stress. It is a component of both stress granules and neuronal RNA granules and is implicated in neurodegenerative disease, synaptic plasticity and long-term memory formation. Our previous work suggested that Caprin1 also plays a role in the response of the cochlea to stress. Here, targeted inner ear-deletion of Caprin1 in mice leads to an early onset, progressive hearing loss. Auditory brainstem responses from Caprin1-deficient mice show reduced thresholds, with a significant reduction in wave-I amplitudes compared to wildtype. Whilst hair cell structure and numbers were normal, the inner hair cell-spiral ganglion neuron (IHC-SGN) synapse revealed abnormally large post-synaptic GluA2 receptor puncta, a defect consistent with the observed wave-I reduction. Unlike wildtype mice, mild-noise-induced hearing threshold shifts in Caprin1-deficient mice did not recover. Oxidative stress triggered TIA-1/HuR-positive stress granule formation in ex-vivo cochlear explants from Caprin1-deficient mice, showing that stress granules could still be induced. Taken together, these findings suggest that Caprin1 plays a key role in maintenance of auditory function, where it regulates the normal status of the IHC-SGN synapse.


Subject(s)
Cell Cycle Proteins/genetics , Gene Deletion , Hearing Loss, Noise-Induced/genetics , Noise/adverse effects , RNA-Binding Proteins/genetics , Animals , Auditory Threshold , Cell Cycle Proteins/metabolism , Evoked Potentials, Auditory, Brain Stem/genetics , Female , Genotype , Hair Cells, Auditory, Inner/metabolism , Hearing/genetics , Hearing Loss, Noise-Induced/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA-Binding Proteins/metabolism , Signal Transduction/genetics , Spiral Ganglion/metabolism , Synapses/metabolism
14.
JCI Insight ; 7(3)2022 02 08.
Article in English | MEDLINE | ID: mdl-35132964

ABSTRACT

Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease.


Subject(s)
Blindness/congenital , Disease Management , Evoked Potentials, Auditory, Brain Stem/physiology , Forecasting , Genetic Diseases, X-Linked/physiopathology , Hearing Loss, Sensorineural/physiopathology , Hearing/physiology , Nervous System Diseases/physiopathology , Retinal Degeneration/physiopathology , Spasms, Infantile/physiopathology , Adolescent , Adult , Animals , Blindness/complications , Blindness/physiopathology , Blindness/therapy , Child , Child, Preschool , Disease Models, Animal , Female , Follow-Up Studies , Genetic Diseases, X-Linked/complications , Genetic Diseases, X-Linked/therapy , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/etiology , Humans , Male , Mice , Mice, Mutant Strains , Nervous System Diseases/complications , Nervous System Diseases/therapy , Retinal Degeneration/complications , Retinal Degeneration/therapy , Spasms, Infantile/complications , Spasms, Infantile/therapy , Young Adult
15.
PLoS One ; 16(10): e0258158, 2021.
Article in English | MEDLINE | ID: mdl-34597341

ABSTRACT

Age-related hearing loss in humans (presbycusis) typically involves impairment of high frequency sensitivity before becoming progressively more severe at lower frequencies. Pathologies initially affecting lower frequency regions of hearing are less common. Here we describe a progressive, predominantly low-frequency recessive hearing impairment in two mutant mouse lines carrying different mutant alleles of the Klhl18 gene: a spontaneous missense mutation (Klhl18lowf) and a targeted mutation (Klhl18tm1a(KOMP)Wtsi). Both males and females were studied, and the two mutant lines showed similar phenotypes. Threshold for auditory brainstem responses (ABR; a measure of auditory nerve and brainstem neural activity) were normal at 3 weeks old but showed progressive increases from 4 weeks onwards. In contrast, distortion product otoacoustic emission (DPOAE) sensitivity and amplitudes (a reflection of cochlear outer hair cell function) remained normal in mutants. Electrophysiological recordings from the round window of Klhl18lowf mutants at 6 weeks old revealed 1) raised compound action potential thresholds that were similar to ABR thresholds, 2) cochlear microphonic potentials that were normal compared with wildtype and heterozygous control mice and 3) summating potentials that were reduced in amplitude compared to control mice. Scanning electron microscopy showed that Klhl18lowf mutant mice had abnormally tapering of the tips of inner hair cell stereocilia in the apical half of the cochlea while their synapses appeared normal. These results suggest that Klhl18 is necessary to maintain inner hair cell stereocilia and normal inner hair cell function at low frequencies.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/genetics , Hair Cells, Auditory, Inner/pathology , Hearing Loss/genetics , Presbycusis/genetics , Animals , Cochlea/pathology , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/physiology , Hair Cells, Auditory, Inner/metabolism , Hearing Loss/pathology , Humans , Mice , Mutation, Missense/genetics , Presbycusis/pathology
16.
Hear Res ; 402: 108109, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33189490

ABSTRACT

There are multiple etiologies and phenotypes of age-related hearing loss or presbyacusis. In this review we summarize findings from animal and human studies of presbyacusis, including those that provide the theoretical framework for distinct metabolic, sensory, and neural presbyacusis phenotypes. A key finding in quiet-aged animals is a decline in the endocochlear potential (EP) that results in elevated pure-tone thresholds across frequencies with greater losses at higher frequencies. In contrast, sensory presbyacusis appears to derive, in part, from acute and cumulative effects on hair cells of a lifetime of environmental exposures (e.g., noise), which often result in pronounced high frequency hearing loss. These patterns of hearing loss in animals are recognizable in the human audiogram and can be classified into metabolic and sensory presbyacusis phenotypes, as well as a mixed metabolic+sensory phenotype. However, the audiogram does not fully characterize age-related changes in auditory function. Along with the effects of peripheral auditory system declines on the auditory nerve, primary degeneration in the spiral ganglion also appears to contribute to central auditory system aging. These inner ear alterations often correlate with structural and functional changes throughout the central nervous system and may explain suprathreshold speech communication difficulties in older adults with hearing loss. Throughout this review we highlight potential methods and research directions, with the goal of advancing our understanding, prevention, diagnosis, and treatment of presbyacusis.


Subject(s)
Presbycusis , Aged , Aging , Animals , Auditory Threshold , Cochlear Nerve , Deafness , Hair Cells, Auditory , Hearing , Humans , Presbycusis/diagnosis
17.
Dis Model Mech ; 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33318051

ABSTRACT

The microRNA miR-96 is important for hearing, as point mutations in humans and mice result in dominant progressive hearing loss. Mir96 is expressed in sensory cells along with Mir182 and Mir183, but the roles of these closely-linked microRNAs are as yet unknown. Here we analyse mice carrying null alleles of Mir182, and of Mir183 and Mir96 together to investigate their roles in hearing. We found that Mir183/96 heterozygous mice had normal hearing and homozygotes were completely deaf with abnormal hair cell stereocilia bundles and reduced numbers of inner hair cell synapses at four weeks old. Mir182 knockout mice developed normal hearing then exhibited progressive hearing loss. Our transcriptional analyses revealed significant changes in a range of other genes, but surprisingly there were fewer genes with altered expression in the organ of Corti of Mir183/96 null mice compared with our previous findings in Mir96 Dmdo mutants, which have a point mutation in the miR-96 seed region. This suggests the more severe phenotype of Mir96 Dmdo mutants compared with Mir183/96 mutants, including progressive hearing loss in Mir96 Dmdo heterozygotes, is likely to be mediated by the gain of novel target genes in addition to the loss of its normal targets. We propose three mechanisms of action of mutant miRNAs; loss of targets that are normally completely repressed, loss of targets whose transcription is normally buffered by the miRNA, and gain of novel targets. Any of these mechanisms could lead to a partial loss of a robust cellular identity and consequent dysfunction.

18.
Front Cell Neurosci ; 14: 561857, 2020.
Article in English | MEDLINE | ID: mdl-33100973

ABSTRACT

Progressive hearing loss is very common in the human population but we know little about the underlying molecular mechanisms. Synaptojanin2 (Synj2) has been reported to be involved, as a mouse mutation led to a progressive increase in auditory thresholds with age. Synaptojanin2 is a phosphatidylinositol (PI) phosphatase that removes the five-position phosphates from phosphoinositides, such as PIP2 and PIP3, and is a key enzyme in clathrin-mediated endocytosis. To investigate the mechanisms underlying progressive hearing loss, we have studied a different mutation of mouse Synj2 to look for any evidence of involvement of vesicle trafficking particularly affecting the synapses of sensory hair cells. Auditory brainstem responses (ABR) developed normally at first but started to decline between 3 and 4 weeks of age in Synj2tm1b mutants. At 6 weeks old, some evidence of outer hair cell (OHC) stereocilia fusion and degeneration was observed, but this was only seen in the extreme basal turn so cannot explain the raised ABR thresholds that correspond to more apical regions of the cochlear duct. We found no evidence of any defect in inner hair cell (IHC) exocytosis or endocytosis using single hair cell recordings, nor any sign of hair cell synaptic abnormalities. Endocochlear potentials (EP) were normal. The mechanism underlying progressive hearing loss in these mutants remains elusive, but our findings of raised distortion product otoacoustic emission (DPOAE) thresholds and signs of OHC degeneration both suggest an OHC origin for the hearing loss. Synaptojanin2 is not required for normal development of hearing but it is important for its maintenance.

19.
Hear Res ; 387: 107879, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31927188

ABSTRACT

The underlying causes of age-related hearing loss (ARHL) are not well understood, but it is clear from heritability estimates that genetics plays a role in addition to environmental factors. Genome-wide association studies (GWAS) in human populations can point to candidate genes that may be involved in ARHL, but follow-up analysis is needed to assess the role of these genes in the disease process. Some genetic variants may contribute a small amount to a disease, while other variants may have a large effect size, but the genetic architecture of ARHL is not yet well-defined. In this study, we asked if a set of 17 candidate genes highlighted by early GWAS reports of ARHL have detectable effects on hearing by knocking down expression levels of each gene in the mouse and analysing auditory function. We found two of the genes have an impact on hearing. Mutation of Dclk1 led to late-onset progressive increase in ABR thresholds and the A430005L14Rik (C1orf174) mutants showed worse recovery from noise-induced damage than controls. We did not detect any abnormal responses in the remaining 15 mutant lines either in thresholds or from our battery of suprathreshold ABR tests, and we discuss the possible reasons for this.


Subject(s)
Auditory Perception/genetics , Genetic Variation , Hearing Loss, Noise-Induced/genetics , Hearing/genetics , Presbycusis/genetics , Age Factors , Animals , Doublecortin-Like Kinases , Evoked Potentials, Auditory, Brain Stem/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Hearing Loss, Noise-Induced/physiopathology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Phenotype , Presbycusis/physiopathology , Protein Serine-Threonine Kinases/genetics , Risk Assessment , Risk Factors
20.
PLoS Biol ; 17(4): e3000194, 2019 04.
Article in English | MEDLINE | ID: mdl-30973865

ABSTRACT

Adult-onset hearing loss is very common, but we know little about the underlying molecular pathogenesis impeding the development of therapies. We took a genetic approach to identify new molecules involved in hearing loss by screening a large cohort of newly generated mouse mutants using a sensitive electrophysiological test, the auditory brainstem response (ABR). We review here the findings from this screen. Thirty-eight unexpected genes associated with raised thresholds were detected from our unbiased sample of 1,211 genes tested, suggesting extreme genetic heterogeneity. A wide range of auditory pathophysiologies was found, and some mutant lines showed normal development followed by deterioration of responses, revealing new molecular pathways involved in progressive hearing loss. Several of the genes were associated with the range of hearing thresholds in the human population and one, SPNS2, was involved in childhood deafness. The new pathways required for maintenance of hearing discovered by this screen present new therapeutic opportunities.


Subject(s)
Auditory Perception/genetics , Evoked Potentials, Auditory, Brain Stem/genetics , Hearing Loss/genetics , Acoustic Stimulation/methods , Adult , Animals , Anion Transport Proteins/genetics , Child , Electrophysiological Phenomena/genetics , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Genetic Association Studies , Hearing/genetics , Hearing Loss/metabolism , Humans , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...