Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Acta Psychiatr Scand ; 139(5): 464-471, 2019 05.
Article in English | MEDLINE | ID: mdl-30848483

ABSTRACT

OBJECTIVE: Associations between suicidality and lipid dysregulation are documented in mental illness, but the potential role of leptin remains unclear. We examined the association between leptin and suicidal behaviour in schizophrenia, together with the influence of other clinical and biological indices. METHOD: We recruited a sample of 270 participants with schizophrenia spectrum diagnoses. Blood samples were analysed for leptin, while symptom severity was assessed by Positive and Negative Syndrome Scale (PANSS) and Inventory of Depressive Symptomatology (IDS-C). Patients' history of suicidal behaviour was categorized into three subgroups based on IDS-C suicide subscale: No suicidal behaviour, mild/moderate suicidal behaviour and severe suicidal behaviour with/without attempts. RESULTS: Mild/moderate suicidal behaviour was present in 17.4% and severe suicidal behaviour in 34.8%. Both groups were significantly associated with female gender (OR = 6.0, P = 0.004; OR = 5.9, P = 0.001), lower leptin levels (OR = 0.4, P = 0.008; OR = 0.5, P = 0.008) and more severe depression (OR = 1.2, P < 0.001; OR = 1.1, P < 0.001) respectively. Smoking (OR = 2.6, P = 0.004), younger age of onset (OR = 0.9, P = 0.003) and less use of leptin-increasing medications (OR = 0.5, P = 0.031) were associated with severe/attempts group, while higher C-reactive protein CRP (OR = 1.3, P = 0.008) was associated with mild/moderate group. CONCLUSION: Lower leptin levels were associated with higher severity of suicidal behaviour in schizophrenia.


Subject(s)
Leptin/metabolism , Schizophrenia/blood , Suicide/psychology , Adult , Age of Onset , C-Reactive Protein/analysis , Cross-Sectional Studies , Depressive Disorder/complications , Depressive Disorder/psychology , Female , Humans , Male , Psychotropic Drugs/adverse effects , Risk Factors , Schizophrenia/complications , Schizophrenia/diagnosis , Schizophrenic Psychology , Severity of Illness Index , Smoking/epidemiology , Smoking/psychology , Suicidal Ideation , Suicide/trends
3.
Mol Psychiatry ; 22(3): 336-345, 2017 03.
Article in English | MEDLINE | ID: mdl-28093568

ABSTRACT

The complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (~8M single-nucleotide polymorphisms (SNP) with minor allele frequency ⩾1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (P<5 × 10-8). Gene-based analysis identified an additional three Bonferroni-corrected significant loci at chromosomes 17q21.31, 17p13.1 and 1p13.3. Altogether, common variation across the genome resulted in a conservatively estimated SNP heritability of 21.5% (s.e.=0.01%) for general cognitive function. Integration with prior GWAS of cognitive performance and educational attainment yielded several additional significant loci. Finally, we found robust polygenic correlations between cognitive performance and educational attainment, several psychiatric disorders, birth length/weight and smoking behavior, as well as a novel genetic association to the personality trait of openness. These data provide new insight into the genetics of neurocognitive function with relevance to understanding the pathophysiology of neuropsychiatric illness.


Subject(s)
Cognition/physiology , Neurocognitive Disorders/genetics , Adult , Alleles , Female , Gene Frequency/genetics , Genetic Association Studies/methods , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , White People/genetics
4.
Mol Psychiatry ; 21(6): 837-43, 2016 06.
Article in English | MEDLINE | ID: mdl-26390830

ABSTRACT

Inbreeding depression refers to lower fitness among offspring of genetic relatives. This reduced fitness is caused by the inheritance of two identical chromosomal segments (autozygosity) across the genome, which may expose the effects of (partially) recessive deleterious mutations. Even among outbred populations, autozygosity can occur to varying degrees due to cryptic relatedness between parents. Using dense genome-wide single-nucleotide polymorphism (SNP) data, we examined the degree to which autozygosity associated with measured cognitive ability in an unselected sample of 4854 participants of European ancestry. We used runs of homozygosity-multiple homozygous SNPs in a row-to estimate autozygous tracts across the genome. We found that increased levels of autozygosity predicted lower general cognitive ability, and estimate a drop of 0.6 s.d. among the offspring of first cousins (P=0.003-0.02 depending on the model). This effect came predominantly from long and rare autozygous tracts, which theory predicts as more likely to be deleterious than short and common tracts. Association mapping of autozygous tracts did not reveal any specific regions that were predictive beyond chance after correcting for multiple testing genome wide. The observed effect size is consistent with studies of cognitive decline among offspring of known consanguineous relationships. These findings suggest a role for multiple recessive or partially recessive alleles in general cognitive ability, and that alleles decreasing general cognitive ability have been selected against over evolutionary time.


Subject(s)
Cognition/physiology , Inbreeding Depression/genetics , Adult , Alleles , Chromosome Mapping/methods , Female , Genome, Human/genetics , Genome-Wide Association Study , Homozygote , Humans , Inbreeding Depression/physiology , Male , Polymorphism, Single Nucleotide/genetics , White People/genetics
5.
Eur Neuropsychopharmacol ; 25(6): 923-32, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25823694

ABSTRACT

Treatment with second-generation antipsychotic agents such as olanzapine frequently results in metabolic adverse effects, e.g. hyperphagia, weight gain and dyslipidaemia in patients of both genders. The molecular mechanisms underlying metabolic adverse effects are still largely unknown, and studies in rodents represent an important approach in their exploration. However, the validity of the rodent model is hampered by the fact that antipsychotics induce weight gain in female, but not male, rats. When administered orally, the short half-life of olanzapine in rats prevents stable plasma concentrations of the drug. We recently showed that a single intramuscular injection of long-acting olanzapine formulation yields clinically relevant plasma concentrations accompanied by several dysmetabolic features in the female rat. In the current study, we show that depot injections of 100-250 mg/kg olanzapine yielded clinically relevant plasma olanzapine concentrations also in male rats. In spite of transient hyperphagia, however, olanzapine resulted in weight loss rather than weight gain. The resultant negative feed efficiency was accompanied by a slight elevation of thermogenesis markers in brown adipose tissue for the highest olanzapine dose, but the olanzapine-related reduction in weight gain remains to be explained. In spite of the absence of weight gain, an olanzapine dose of 200mg/kg or above induced significantly elevated plasma cholesterol levels and pronounced activation of lipogenic gene expression in the liver. These results confirm that olanzapine stimulates lipogenic effects, independent of weight gain, and raise the possibility that endocrine factors may influence gender specificity of metabolic effects of antipsychotics in the rat.


Subject(s)
Antiemetics/pharmacology , Benzodiazepines/pharmacology , Body Weight/drug effects , Lipogenesis/drug effects , Adipocytes/drug effects , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Blood Glucose , Delayed-Action Preparations/pharmacology , Dose-Response Relationship, Drug , Fasting , Female , Lipids/blood , Liver/drug effects , Liver/pathology , Male , Olanzapine , Rats , Rats, Sprague-Dawley , Thermogenesis/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Genes Brain Behav ; 13(7): 663-74, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24975275

ABSTRACT

Cognitive abilities vary among people. About 40-50% of this variability is due to general intelligence (g), which reflects the positive correlation among individuals' scores on diverse cognitive ability tests. g is positively correlated with many life outcomes, such as education, occupational status and health, motivating the investigation of its underlying biology. In psychometric research, a distinction is made between general fluid intelligence (gF) - the ability to reason in novel situations - and general crystallized intelligence (gC) - the ability to apply acquired knowledge. This distinction is supported by developmental and cognitive neuroscience studies. Classical epidemiological studies and recent genome-wide association studies (GWASs) have established that these cognitive traits have a large genetic component. However, no robust genetic associations have been published thus far due largely to the known polygenic nature of these traits and insufficient sample sizes. Here, using two GWAS datasets, in which the polygenicity of gF and gC traits was previously confirmed, a gene- and pathway-based approach was undertaken with the aim of characterizing and differentiating their genetic architecture. Pathway analysis, using genes selected on the basis of relaxed criteria, revealed notable differences between these two traits. gF appeared to be characterized by genes affecting the quantity and quality of neurons and therefore neuronal efficiency, whereas long-term depression (LTD) seemed to underlie gC. Thus, this study supports the gF-gC distinction at the genetic level and identifies functional annotations and pathways worthy of further investigation.


Subject(s)
Cognition , Genome, Human , Intelligence/genetics , Metabolic Networks and Pathways/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Genetic Markers , Genome-Wide Association Study , Humans , Long-Term Synaptic Depression/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide
7.
Transl Psychiatry ; 4: e341, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24399044

ABSTRACT

Differences in general cognitive ability (intelligence) account for approximately half of the variation in any large battery of cognitive tests and are predictive of important life events including health. Genome-wide analyses of common single-nucleotide polymorphisms indicate that they jointly tag between a quarter and a half of the variance in intelligence. However, no single polymorphism has been reliably associated with variation in intelligence. It remains possible that these many small effects might be aggregated in networks of functionally linked genes. Here, we tested a network of 1461 genes in the postsynaptic density and associated complexes for an enriched association with intelligence. These were ascertained in 3511 individuals (the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium) phenotyped for general cognitive ability, fluid cognitive ability, crystallised cognitive ability, memory and speed of processing. By analysing the results of a genome wide association study (GWAS) using Gene Set Enrichment Analysis, a significant enrichment was found for fluid cognitive ability for the proteins found in the complexes of N-methyl-D-aspartate receptor complex; P=0.002. Replication was sought in two additional cohorts (N=670 and 2062). A meta-analytic P-value of 0.003 was found when these were combined with the CAGES consortium. The results suggest that genetic variation in the macromolecular machines formed by membrane-associated guanylate kinase (MAGUK) scaffold proteins and their interaction partners contributes to variation in intelligence.


Subject(s)
Cognition/physiology , Genome-Wide Association Study , Guanylate Kinases/genetics , Intelligence/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Signal Transduction/genetics , Aged , Aged, 80 and over , Cognition/classification , Cohort Studies , Female , Genetic Variation , Humans , Male , Middle Aged , Phenotype , Proteomics
8.
Mol Psychiatry ; 19(2): 168-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24342994

ABSTRACT

It has long been recognized that generalized deficits in cognitive ability represent a core component of schizophrenia (SCZ), evident before full illness onset and independent of medication. The possibility of genetic overlap between risk for SCZ and cognitive phenotypes has been suggested by the presence of cognitive deficits in first-degree relatives of patients with SCZ; however, until recently, molecular genetic approaches to test this overlap have been lacking. Within the last few years, large-scale genome-wide association studies (GWAS) of SCZ have demonstrated that a substantial proportion of the heritability of the disorder is explained by a polygenic component consisting of many common single-nucleotide polymorphisms (SNPs) of extremely small effect. Similar results have been reported in GWAS of general cognitive ability. The primary aim of the present study is to provide the first molecular genetic test of the classic endophenotype hypothesis, which states that alleles associated with reduced cognitive ability should also serve to increase risk for SCZ. We tested the endophenotype hypothesis by applying polygenic SNP scores derived from a large-scale cognitive GWAS meta-analysis (~5000 individuals from nine nonclinical cohorts comprising the Cognitive Genomics consorTium (COGENT)) to four SCZ case-control cohorts. As predicted, cases had significantly lower cognitive polygenic scores compared to controls. In parallel, polygenic risk scores for SCZ were associated with lower general cognitive ability. In addition, using our large cognitive meta-analytic data set, we identified nominally significant cognitive associations for several SNPs that have previously been robustly associated with SCZ susceptibility. Results provide molecular confirmation of the genetic overlap between SCZ and general cognitive ability, and may provide additional insight into pathophysiology of the disorder.


Subject(s)
Cognition , Schizophrenia/genetics , Adolescent , Adult , Aged , Alleles , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotyping Techniques , Humans , Male , Middle Aged , Multifactorial Inheritance , Neuropsychological Tests , Polymorphism, Single Nucleotide , Risk , Schizophrenia/epidemiology , Young Adult
9.
Mol Psychiatry ; 16(10): 996-1005, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21826061

ABSTRACT

General intelligence is an important human quantitative trait that accounts for much of the variation in diverse cognitive abilities. Individual differences in intelligence are strongly associated with many important life outcomes, including educational and occupational attainments, income, health and lifespan. Data from twin and family studies are consistent with a high heritability of intelligence, but this inference has been controversial. We conducted a genome-wide analysis of 3511 unrelated adults with data on 549,692 single nucleotide polymorphisms (SNPs) and detailed phenotypes on cognitive traits. We estimate that 40% of the variation in crystallized-type intelligence and 51% of the variation in fluid-type intelligence between individuals is accounted for by linkage disequilibrium between genotyped common SNP markers and unknown causal variants. These estimates provide lower bounds for the narrow-sense heritability of the traits. We partitioned genetic variation on individual chromosomes and found that, on average, longer chromosomes explain more variation. Finally, using just SNP data we predicted ∼1% of the variance of crystallized and fluid cognitive phenotypes in an independent sample (P=0.009 and 0.028, respectively). Our results unequivocally confirm that a substantial proportion of individual differences in human intelligence is due to genetic variation, and are consistent with many genes of small effects underlying the additive genetic influences on intelligence.


Subject(s)
Genome, Human , Intelligence/genetics , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Female , Genome-Wide Association Study , Humans , Longitudinal Studies , Male , Middle Aged , Quantitative Trait, Heritable , Reference Values , Young Adult
10.
Pharmacopsychiatry ; 44(1): 15-20, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20821366

ABSTRACT

INTRODUCTION: Marked inter-individual variation has been observed with respect to the risk of weight gain and related metabolic disturbances during antipsychotic treatment, which in part could be explained by heritability. Such adverse effects have been proposed to occur through drug-induced mechanisms involving both the central nervous system and different peripheral tissues. METHODS: We genotyped tagSNPs in several genes ( ADIPOQ, PRKAA1, PRKAA2, PRKAB1, PRKAG1, PRKAG2, PRKAG3, FTO and FABP3) that regulate lipid and energy homeostasis for their possible association to antipsychotic-induced weight gain. RESULTS: In a sample of 160 patients of German origin with schizophrenia who had been monitored with respect to body weight, we found marked association between antipsychotic-related changes in BMI and 6 markers in the adiponectin gene ( ADIPOQ). DISCUSSION: These findings support previous observations (in patients' serum) that adiponectin is involved in antipsychotic-mediated metabolic adverse effects.


Subject(s)
Antipsychotic Agents/adverse effects , Homeostasis/genetics , Schizophrenia/drug therapy , Weight Gain/drug effects , Adiponectin/genetics , Adolescent , Adult , Antipsychotic Agents/therapeutic use , Child , Female , Genetic Association Studies , Genetic Markers/genetics , Genotype , Homeostasis/drug effects , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , Weight Gain/genetics , Young Adult
11.
Mol Psychiatry ; 15(5): 463-72, 2010 May.
Article in English | MEDLINE | ID: mdl-18936756

ABSTRACT

Several studies have reported structural brain abnormalities, decreased myelination and oligodendrocyte dysfunction in schizophrenia. In the central nervous system, glia-derived de novo synthesized cholesterol is essential for both myelination and synaptogenesis. Previously, we demonstrated in glial cell lines that antipsychotic drugs induce the expression of genes involved in cholesterol and fatty acids biosynthesis through activation of the sterol regulatory element binding protein (SREBP) transcription factors, encoded by the sterol regulatory element binding transcription factor 1 (SREBF1) and sterol regulatory element binding transcription factor 2 (SREBF2) genes. Considering the importance of these factors in the lipid biosynthesis and their possible involvement in antipsychotic drug effects, we hypothesized that genetic variants of SREBF1 and/or SREBF2 could affect schizophrenia susceptibility. We therefore conducted a HapMap-based association study in a large German sample, and identified association between schizophrenia and five markers in SREBF1 and five markers in SREBF2. Follow-up studies in two independent samples of Danish and Norwegian origin (part of the Scandinavian collaboration of psychiatric etiology study, SCOPE) replicated the association for the five SREBF1 markers and for two markers in SREBF2. A combined analysis of all samples resulted in highly significant genotypic P-values of 9 x 10(-4) for SREBF1 (rs11868035, odd ration (OR)=1.26, 95% confidence interval (CI) (1.09-1.45)) and 4 x 10(-5) for SREBF2 (rs1057217, OR=1.39, 95% CI (1.19-1.63)). This finding strengthens the hypothesis that SREBP-controlled cholesterol biosynthesis is involved in the etiology of schizophrenia.


Subject(s)
Antipsychotic Agents/therapeutic use , Genetic Predisposition to Disease , Lipogenesis/drug effects , Polymorphism, Single Nucleotide/genetics , Schizophrenia/drug therapy , Schizophrenia/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Adult , Case-Control Studies , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 22/genetics , Female , Genome-Wide Association Study , Genotype , Germany , Humans , Lipogenesis/genetics , Male , Middle Aged , Odds Ratio , Scandinavian and Nordic Countries
12.
Schizophr Res ; 107(2-3): 242-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19022628

ABSTRACT

There is considerable evidence of altered glutamatergic signalling in schizophrenia and a polymorphic variant of the GRIK3 glutamate receptor gene on 1p34-33 has previously been associated to this psychotic disorder. We therefore conducted a systematic association study with 30 HapMap-selected tagging SNPs across GRIK3 in three independent samples of Scandinavian origin from the Scandinavian Collaboration of Psychiatric Etiology (SCOPE), including a total of 839 cases with schizophrenia spectrum and 1473 healthy controls. Four markers (rs6671364, rs17461259, rs472188, and rs535620) attained nominally significant P-values in both the genotypic (0.002, 0.02, 0.03, and 0.05, respectively) and allelic (0.001, 0.006, 0.03, and 0.02, respectively) association tests for the combined sample, and 2 additional markers (rs481047and rs1160751) displayed significance for the genotype (P-values: 0.03 and 0.04). Several haplotypes, that all included at least one of the four SNPs implicated by the single marker analysis, remained significant after adjustment for multiple testing using permutations with 10,000 shuffles. In addition we observed an association for two of the four significant GRIK3 markers (rs472188 and rs535620) to scores for negative symptoms on the PANSS scale. The present results, although not robust, support the importance of more extensive investigations of GRIK3, given its potential role in mediating risk for schizophrenia.


Subject(s)
Alleles , Polymorphism, Genetic/genetics , Psychotic Disorders/genetics , Receptors, Kainic Acid/genetics , Schizophrenia/genetics , Adult , Chromosomes, Human, Pair 1/genetics , Female , Genetic Markers/genetics , Genotype , Haplotypes , Humans , Linkage Disequilibrium/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Psychiatric Status Rating Scales , Psychotic Disorders/diagnosis , Psychotic Disorders/psychology , Scandinavian and Nordic Countries , Schizophrenia/diagnosis , Schizophrenic Psychology , GluK3 Kainate Receptor
13.
Mol Psychiatry ; 14(3): 308-17, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18195716

ABSTRACT

Atypical antipsychotics are nowadays the most widely used drugs to treat schizophrenia and other psychosis. Unfortunately, some of them can cause major metabolic adverse effects, such as weight gain, dyslipidemia and type 2 diabetes. The underlying lipogenic mechanisms of the antipsychotic drugs are not known, but several studies have focused on a central effect in the hypothalamic control of appetite regulation and energy expenditure. In a functional convergent genomic approach we recently used a cellular model and demonstrated that orexigenic antipsychotics that induce weight gain activate the expression of lipid biosynthesis genes controlled by the sterol regulatory element-binding protein (SREBP) transcription factors. We therefore hypothesized that the major genes involved in the SREBP activation of fatty acids and cholesterol production (SREBF1, SREBF2, SCAP, INSIG1 and INSIG2) would be strong candidate genes for interindividual variation in drug-induced weight gain. We genotyped a total of 44 HapMap-selected tagging single nucleotide polymorphisms in a sample of 160 German patients with schizophrenia that had been monitored with respect to changes in body mass index during antipsychotic drug treatment. We found a strong association (P=0.0003-0.00007) between three markers localized within or near the INSIG2 gene (rs17587100, rs10490624 and rs17047764) and antipsychotic-related weight gain. Our finding is supported by the recent involvement of the INSIG2 gene in obesity in the general population and implicates SREBP-controlled lipogenesis in drug-induced metabolic adverse effects.


Subject(s)
Antipsychotic Agents/therapeutic use , Clozapine/therapeutic use , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Schizophrenia/genetics , Weight Gain/genetics , Adolescent , Adult , Antipsychotic Agents/adverse effects , Chi-Square Distribution , Child , Clozapine/adverse effects , Female , Genetic Linkage , Genetic Predisposition to Disease , Haplotypes , Humans , Lipogenesis/drug effects , Lipogenesis/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide , Retrospective Studies , Schizophrenia/drug therapy , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Proteins/genetics , Weight Gain/drug effects , Young Adult
14.
Ann Oncol ; 19(1): 56-61, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17947222

ABSTRACT

BACKGROUND: Tamoxifen is hydroxylated by cytochrome P450 (CYP) 2D6 to the potent metabolites 4-hydroxytamoxifen (4OHtam) and 4-hydroxy-N-demethyltamoxifen (4OHNDtam), which are both conjugated by sulphotransferase (SULT)1A1. Clinical studies indicate that CYP2D6 and SULT1A1 genotypes are predictors for treatment response to tamoxifen. Therefore, we examined the relationship between CYP2D6 genotype, SULT1A1 genotype, SULT1A1 copy number and the pharmacokinetics of tamoxifen. PATIENTS AND METHODS: The serum levels of tamoxifen and metabolites of 151 breast cancer patients were measured by high-pressure liquid chromatography-tandem mass spectrometry. The CYP2D6 and SULT1A1 polymorphisms and SULT1A1 copy number were determined by long PCR, PCR-based restriction fragment length polymorphism, DNA sequencing and fluorescence-based PCR. RESULTS: The levels of 4OHtam, 4OHNDtam and N-demethyltamoxifen were associated with CYP2D6 predicted enzymatic activity (P < 0.05). The SULT1A1 genotype or copy number did not influence the levels of tamoxifen and its metabolites. However, the ratios of N-demethyltamoxifen/tamoxifen and N-dedimethyltamoxifen/N-demethyltamoxifen were related to SULT1A1 genotype. CONCLUSION: CYP2D6 and SULT1A1 genotypes may partly explain the wide inter-individual variations in the serum levels of tamoxifen and its metabolites. We propose that therapeutic drug monitoring should be included in studies linking CYP2D6 and SULT1A1 genotypes to clinical outcome.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacokinetics , Arylsulfotransferase/genetics , Breast Neoplasms/drug therapy , Cytochrome P-450 CYP2D6/genetics , Selective Estrogen Receptor Modulators/pharmacokinetics , Tamoxifen/pharmacokinetics , Adult , Aged , Aged, 80 and over , Arylsulfotransferase/metabolism , Biotransformation/genetics , Breast Neoplasms/blood , Breast Neoplasms/enzymology , Cytochrome P-450 CYP2D6/metabolism , Female , Gene Dosage , Gene Frequency , Genotype , Humans , Middle Aged , Norway , Polymorphism, Restriction Fragment Length , Tamoxifen/analogs & derivatives , Tamoxifen/blood
15.
Neuroscience ; 148(4): 925-36, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17764852

ABSTRACT

Gene expression in adult neuronal circuits is dynamically modulated in response to synaptic activity. Persistent changes in synaptic strength, as seen during high-frequency stimulation (HFS)-induced long-term potentiation (LTP), require new gene expression. While modulation of many individual genes has been shown, an understanding of LTP as a complex dynamical response requires elucidation of the global gene expression signature and its impact on biologically meaningful gene sets. In this study, we demonstrate that LTP induction in the dentate gyrus of awake freely moving rats was associated with changes in the expression of genes linked to signal transduction, protein trafficking, cell structure and motility, and other processes consistent with the induction of mechanisms of synaptic reorganization and growth. Interestingly, the most significantly over-represented gene sets were related to immunity and defense, including T-cell-mediated immunity and major histocompatibility complex (MHC) class I-mediated immunity. Real-time PCR confirmed the upregulation of a panel of immune-linked genes including the rt1-a/ce family, and the MHC class II members cd74, rt1-Ba and rt1-Da. These genes were N-methyl-d-aspartate receptor-independent and not induced following HFS-LTP induction in anesthetized rats, indicating a gene response specific to behaving rats. Our data support recent assumptions that immunity-associated processes are functionally linked to adaptive neuronal responses in the brain, although the differential expression of immunity-linked genes could also be related to the HFS per se.


Subject(s)
Dentate Gyrus/physiology , Gene Expression Regulation/physiology , Gene Expression/physiology , Immunity/genetics , Long-Term Potentiation/physiology , Wakefulness/physiology , Animals , Behavior, Animal , Dentate Gyrus/radiation effects , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/radiation effects , Gene Expression/radiation effects , Gene Expression Profiling/methods , Gene Expression Regulation/radiation effects , Immunity/radiation effects , Long-Term Potentiation/radiation effects , Male , Microarray Analysis/methods , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction/methods , Time Factors
16.
Eur Respir J ; 27(4): 682-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16585076

ABSTRACT

There is evidence of a hereditary component in chronic obstructive pulmonary disease (COPD). A number of genetic association studies have been performed to find susceptibility genes of COPD. The current authors performed a case-control, genetic-association study and a meta-analysis of 16 studies, involving seven polymorphisms in three well-studied genes: microsomal epoxide hydroxylase (EPHX1); tumour necrosis factor; and beta2-adrenoreceptor. A total of 492 Caucasian smokers and former smokers were recruited from hospital databases and population cohort studies. In the present study, a protective effect of the EPHX1 Tyr113His polymorphism was found (homozygous odds ratio (OR) 0.5). In the meta-analysis, homozygotes for this single nucleotide polymorphism (SNP) also had a pooled OR of 0.5. The same effect has been found in several lung cancer studies. Effects for other candidate SNPs were weak or statistically insignificant, and probable genotyping error was common. In conclusion, the present data and meta-analysis support a role for microsomal epoxide hydroxylase in the aetiology of chronic obstructive pulmonary disease.


Subject(s)
Epoxide Hydrolases/genetics , Polymorphism, Genetic/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Receptors, Adrenergic, beta-2/genetics , Tumor Necrosis Factor-alpha/genetics , Adult , Aged , Case-Control Studies , Cohort Studies , Female , Genetic Testing , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Smoking/adverse effects , Smoking/genetics , Smoking Cessation , Statistics as Topic
17.
Pharmacogenomics J ; 5(5): 298-304, 2005.
Article in English | MEDLINE | ID: mdl-16027736

ABSTRACT

Several studies have reported on structural abnormalities, decreased myelination and oligodendrocyte dysfunction in post-mortem brains from schizophrenic patients. Glia-derived cholesterol is essential for both myelination and synaptogenesis in the CNS. Lipogenesis and myelin synthesis are thus interesting etiological candidate targets in schizophrenia. Using a microarray approach, we here demonstrate that the antipsychotic drugs clozapine and haloperidol upregulate several genes involved in cholesterol and fatty acid biosynthesis in cultured human glioma cells, including HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase), HMGCS1 (3-hydroxy-3-methylglutaryl-coenzyme A synthase-1), FASN (fatty acid synthase) and SCD (stearoyl-CoA desaturase). The changes in gene expression were followed by enhanced HMGCR-enzyme activity and elevated cellular levels of cholesterol and triglycerides. The upregulated genes are all known to be controlled by the sterol regulatory element-binding protein (SREBP) transcription factors. We show that clozapine and haloperidol both activate the SREBP system. The antipsychotic-induced SREBP-mediated increase in glial cell lipogenesis could represent a novel mechanism of action, and may also be relevant for the metabolic side effects of antipsychotics.


Subject(s)
Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Fatty Acid Synthases/genetics , Gene Expression Regulation, Neoplastic/drug effects , Haloperidol/pharmacology , Hydroxymethylglutaryl-CoA Synthase/genetics , Cell Line, Tumor , Cholesterol/biosynthesis , Cholesterol/genetics , Fatty Acid Synthases/metabolism , Fatty Acids/biosynthesis , Fatty Acids/genetics , Gene Expression Profiling , Glioma , Humans , Hydroxymethylglutaryl-CoA Synthase/metabolism , Oligonucleotide Array Sequence Analysis , RNA/metabolism , Schizophrenia/drug therapy , Schizophrenia/genetics , Time Factors , Up-Regulation
20.
Mol Psychiatry ; 9(6): 621-9, 2004 Jun.
Article in English | MEDLINE | ID: mdl-14699425

ABSTRACT

Manic-depressive (bipolar) illness is a serious psychiatric disorder with a strong genetic predisposition. The disorder is likely to be multifactorial and etiologically complex, and the causes of genetic susceptibility have been difficult to unveil. Lithium therapy is a widely used pharmacological treatment of manic-depressive illness, which both stabilizes the ongoing episodes and prevents relapses. A putative target of lithium treatment has been the inhibition of the myo-inositol monophosphatase (IMPase) enzyme, which dephosphorylates myo-inositol monophosphate in the phosphatidylinositol signaling system. Two genes encoding human IMPases have so far been isolated, namely myo-inositol monophosphatase 1 (IMPA1) on chromosome 8q21.13-21.3 and myo-inositol monophosphatase 2 (IMPA2) on chromosome 18p11.2. In the present study, we have scanned for DNA variants in the human IMPA1 and IMPA2 genes in a pilot sample of Norwegian manic-depressive patients, followed by examination of selected polymorphisms and haplotypes in a family-based bipolar sample of Palestinian Arab proband-parent trios. Intriguingly, two frequent single-nucleotide polymorphisms (-461C>T and -207T>C) in the IMPA2 promoter sequence and their corresponding haplotypes showed transmission disequilibrium in the Palestinian Arab trios. No association was found between the IMPA1 polymorphisms and bipolar disorder, neither with respect to disease susceptibility nor with variation in lithium treatment response. The association between manic-depressive illness and IMPA2 variants supports several reports on the linkage of bipolar disorder to chromosome 18p11.2, and sustains the possible role of IMPA2 as a susceptibility gene in bipolar disorder.


Subject(s)
Bipolar Disorder/genetics , Phosphoric Monoester Hydrolases/genetics , Polymorphism, Single Nucleotide , Base Sequence , Bipolar Disorder/enzymology , Chromosome Mapping , Chromosomes, Human, Pair 18/genetics , Chromosomes, Human, Pair 8/genetics , DNA Primers , Humans , Norway , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...