Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 133(27): 10490-8, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21639111

ABSTRACT

A critical bottleneck for the widespread use of single layer graphene is the absence of a facile method of chemical modification which does not diminish the outstanding properties of the two-dimensional sp(2) network. Here, we report on the direct chemical modification of graphene by photopolymerization with styrene. We demonstrate that photopolymerization occurs at existing defect sites and that there is no detectable disruption of the basal plane conjugation of graphene. This method thus offers a route to define graphene functionality without degrading its electronic properties. Furthermore, we show that photopolymerization with styrene results in self-organized intercalative growth and delamination of few layer graphene. Under these reaction conditions, we find that a range of other vinyl monomers exhibits no reactivity with graphene. However, we demonstrate an alternative route by which the surface reactivity can be precisely tuned, and these monomers can be locally grafted via electron-beam-induced carbon deposition on the graphene surface.


Subject(s)
Graphite/chemistry , Photochemical Processes , Polymerization , Styrene/chemistry , Copper/chemistry , Microscopy, Atomic Force , Surface Properties
2.
Small ; 7(5): 683-7, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21370466

ABSTRACT

For the development of polymer carpets as active devices for micro- and nanotechnology, a control of the polymer carpet morphology and especially control of the stimulus responsive polymer brush is needed. Here, we report on the first example for the fabrication of patterned polymer carpets. On a two-dimensional framework of fully crosslinked and chemically patterned nanosheets, polymer brushes of styrene and 4-vinyl pyridine were grafted by self-initiated surface photopolymerization and photografting (SIPGP). It was found that polymer grafting by SIPGP occurred over the entire nanosheets but with a preferred grafting on the amino functionalized nanosheet areas. This results in continuous polymer carpets with an intact nanosheet framework but with amplification of the chemical patterning into a three dimensional topography of the grafted polymer brush. In the case of negative patterned nanosheets, the patterned carpet could be prepared as freestanding ultrathin membranes. Furthermore, swelling experiments with poly(4-vinyl pyridine) carpets showed that the patterns induces a directional buckling of the flexible polymer carpet. This may open the possibility of the development of micro- or nanoactuator devices with anisotropic responds upon environmental changes.


Subject(s)
Polymers/chemistry , Microscopy, Atomic Force , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology , Polyvinyls/chemistry , Surface Properties
3.
Small ; 6(15): 1623-30, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20635346

ABSTRACT

The fabrication of defined polymer objects of reduced dimensions such as polymer-coated nanoparticles (zero-dimensional (0D)), cylindrical brushes (1D), and polymer membranes (2D), is currently the subject of intense research. In particular, ultrathin polymer membranes with high aspect ratios are being discussed as novel materials for miniaturized sensors because they would provide extraordinary sensitivity and dynamic range when sufficient mechanical stability can be combined with flexibility and chemical functionality. Unlike current approaches that rely on crosslinking of polymer layers for stabilization, this report presents the preparation of a new class of polymer material, so-called "polymer carpets," a freestanding polymer brush grown by surface-initiated polymerization on a crosslinked 1-nm-thick monolayer. The solid-supported, as well as freestanding, polymer carpets are found to be mechanically robust and to react instantaneously and reversibly to external stimuli by buckling. The carpet mechanics and the dramatic changes of the film properties (optical, wetting) upon chemical stimuli are investigated in detail as they allow the development of completely new integrated micro-/nanotechnology devices.


Subject(s)
Nanostructures/chemistry , Polymers/chemistry , Microscopy, Atomic Force , Nanostructures/ultrastructure , Nanotechnology
4.
Phys Chem Chem Phys ; 12(17): 4360-6, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20407707

ABSTRACT

We report on the preparation of microstructured poly(2-oxazoline) bottle-brush brushes (BBBs) on nanocrystalline diamond (NCD). Structuring of NCD was performed by photolithography and plasma treatment to result in a patterned NCD surface with oxidized and hydrogenated areas. Self-initiated photografting and photopolymerization (SIPGP) of 2-isopropenyl-2-oxazoline (IPOx) resulted in selective grafting of poly(2-isopropenyl-2-oxazoline) (PIPOx) polymer brushes only at the oxidized NCD areas. Structured PIPOx brushes were converted by methyl triflate into the polyelectrolyte brush macroinitiator for the living cationic ring-opening polymerization (LCROP) of 2-oxazolines. The LCROP was performed with 2-ethyl-2-oxazoline (EtOx) as well as 2-(carbazolyl)ethyl-2-oxazoline (CarbOx) as monomers, resulting in structured bottle-brush brushes (BBB) with different pendant side chains and functionalities. FT-IR spectroscopy, fluorescence microscopy, and AFM measurements indicated a high side chain grafting density as well as quantitative and selective reactions. Poly(2-oxazoline) BBBs containing hole conducting carbazole moieties on NCD as electrode material may open the way to advanced amperometric biosensing systems.

5.
Langmuir ; 25(4): 2225-31, 2009 Feb 17.
Article in English | MEDLINE | ID: mdl-19140707

ABSTRACT

The self-initiated photografting and photopolymerization (SIPGP) of styrene, methyl methacrylate, and tert-butyl methacrylate on structured self-assembled monolayers (SAMs) of electron beam cross-linked omega-functionalized biphenylthiols SAMs on gold was investigated. Polymer brushes with defined thickness can be prepared on crosslinked benzyl-, phenyl-, hydroxyl-, and amino-functionalized SAMs, whereas non-cross-linked SAM regions desorb from the surface during the SIPGP process. By the preparation of brush gradients on different functionalized SAMs, it was demonstrated that the resulting polymer brush layer thickness is determined by the locally applied electron beam dosage. Defined micro-nanostructured polymer brush patterns can be prepared down to a size of 50 nm. Finally, it was shown that polymer brushes obtained by the SIPGP process have a branched architecture.

6.
J Am Chem Soc ; 129(50): 15655-61, 2007 Dec 19.
Article in English | MEDLINE | ID: mdl-18034481

ABSTRACT

In this work, a facile method for the preparation of structured and functional polymer grafts on diamond surfaces is described. Uniform poly(styrene) (PS) grafts with a thickness of approximately 110 nm were created directly onto oxidized ultrananocrystalline diamond (UNCD) surfaces by the self-initiated photografting and photopolymerization of bulk styrene with UV irradiation. The stable covalent bonding of the PS grafts allows polymer analogue reactions with drastic reaction conditions without noticeable detachment of the polymer coating. Thus, various functionalities, such as nitro, sulfonic, and aminomethyl groups have been successfully incorporated to the polymer grafts. Furthermore, the reactivity contrast between hydrogenated and oxidized UNCD surfaces allows for the preparation of structured polymer grafts. Finally, we have demonstrated the good reactivity and accessibility of the incorporated pendant functional groups.


Subject(s)
Diamond/chemistry , Polymers/chemistry , Crystallization , Microscopy, Atomic Force , Molecular Structure , Surface Properties
7.
Small ; 3(10): 1764-73, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17853498

ABSTRACT

The surface-initiated photopolymerization (SIPP) of vinyl monomers on structured self-assembled monolayers, as defined by two-dimensional (2D) initiator templates for polymer growth, is investigated. The 2D templates are prepared by electron-beam chemical lithography (EBCL) of 4'-nitro-4-mercaptobiphenyl (NBT) and chemical conversion to an asymmetric azo initiator (4'-azomethylmalonodinitrile-1,1'-biphenyl-4-thiol). Ex situ kinetic studies of the SIPP process reveal a linear increase in the thickness of the polymer layer with the irradiation/polymerization time. The effect of the applied electron dosage during the EBCL process upon the final thickness of the polymer layer is also studied. The correlation between the electron-induced conversion of the 4'-nitro to the 4'-amino group and the layer thickness of the resulting polymer brush indicates that the polymer-brush grafting density can be directly controlled by the EBCL process. NBT-based template arrays are used for the combinatorial study of the influence of the lateral structure size and the irradiation dosage on the morphology of the resulting polymer-brush layer. Analysis of the array topography reveals the dependence of the thickness of the dry polymer layer on both electron dosage and structure size. This unique combination of EBCL as a lithographic technique to locally manipulate the surface chemistry and SIPP to amplify the created differences allows the preparation of defined polymer-brush layers of controlled morphologies.


Subject(s)
Nanostructures/chemistry , Polymers/chemistry , Electrons , Microscopy, Atomic Force , Polystyrenes/chemistry
8.
Small ; 3(3): 459-65, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17245782

ABSTRACT

Nanopatterned polymer brushes with sub-50-nm resolution were prepared by a combination of electron-beam chemical lithography (EBCL) of self-assembled monolayers (SAMs) and surface-initiated photopolymerization (SIPP). As a further development of our previous work, selective EBCL was performed with a highly focused electron beam and not via a mask, to region-selectively convert a SAM of 4'-nitro-1,1'-biphenyl-4-thiol to defined areas of crosslinked 4'-amino-1,1'-biphenyl-4-thiol. These "written" structures were then used to prepare surface-bonded, asymmetric, azo initiator sites of 4'-azomethylmalonodinitrile-1,1'-biphenyl-4-thiol. In the presence of bulk styrene, SIPP amplified the primary structures of line widths from 500 to 10 nm to polystyrene structures of line widths 530 nm down to approximately 45 nm at a brush height of 10 or 7 nm, respectively, as measured by scanning electron microscopy and atomic force microscopy (AFM). The relative position of individual structures was within a tolerance of a few nanometers, as verified by AFM. At line-to-line spacings down to 50-70 nm, individual polymer brush structures are still observable. Below this threshold, neighboring structures merge due to chain overlap.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Polystyrenes/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
9.
J Am Chem Soc ; 128(51): 16884-91, 2006 Dec 27.
Article in English | MEDLINE | ID: mdl-17177439

ABSTRACT

We have investigated the formation of self-assembled monolayers (SAMs) of 4'-nitro-1,1-biphenyl-4-diazonium tetrafluoroborate (NBD) onto ultrananocrystalline diamond (UNCD) thin films. In contrast to the common approach to modify diamond and diamond-like substrates by electrografting, the SAM was formed from the saturated solution of NBD in acetonitrile by pure chemical grafting. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and near edge X-ray absorption fine structure spectroscopy (NEXAFS) have been used to verify the direct covalent attachment of the 4'-nitro-1,1-biphenyl (NB) SAM on the diamond substrate via stable C-C bonds and to estimate the monolayer packing density. The results confirm the presence of a very stable, homogeneous and dense monolayer. Additionally, the terminal nitro group of the NB SAM can be readily converted into an amino group by X-ray irradiation as well as electrochemistry. This opens the possibility of in situ electrochemical modification as well as the creation of chemical patterns (chemical lithography) in the SAM on UNCD substrates and enables a variety of consecutive chemical functionalization for sensing and molecular electronics applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...