Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6682): 512-519, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38301007

ABSTRACT

The generation of cyclic oligoadenylates and subsequent allosteric activation of proteins that carry sensory domains is a distinctive feature of type III CRISPR-Cas systems. In this work, we characterize a set of associated genes of a type III-B system from Haliangium ochraceum that contains two caspase-like proteases, SAVED-CHAT and PCaspase (prokaryotic caspase), co-opted from a cyclic oligonucleotide-based antiphage signaling system (CBASS). Cyclic tri-adenosine monophosphate (AMP)-induced oligomerization of SAVED-CHAT activates proteolytic activity of the CHAT domains, which specifically cleave and activate PCaspase. Subsequently, activated PCaspase cleaves a multitude of proteins, which results in a strong interference phenotype in vivo in Escherichia coli. Taken together, our findings reveal how a CRISPR-Cas-based detection of a target RNA triggers a cascade of caspase-associated proteolytic activities.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Caspases , Myxococcales , Proteolysis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Caspases/chemistry , Caspases/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , RNA/metabolism , Myxococcales/enzymology , Myxococcales/genetics , Protein Domains
2.
Mol Cell ; 82(23): 4405-4406, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459983

ABSTRACT

In this issue, Liu et al. present an in-depth study aiming to unravel the structural, biochemical, and physiological aspects of how type III-E CRISPR-Cas systems trigger abortive infection by activating a protease upon target RNA recognition.1.


Subject(s)
CRISPR-Cas Systems , Endopeptidases , Peptide Hydrolases , RNA , Biology
3.
Biochem Soc Trans ; 50(5): 1353-1364, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36282000

ABSTRACT

Type III CRISPR-Cas systems make use of a multi-subunit effector complex to target foreign (m)RNA transcripts complementary to the guide/CRISPR RNA (crRNA). Base-pairing of the target RNA with specialized regions in the crRNA not only triggers target RNA cleavage, but also activates the characteristic Cas10 subunit and sets in motion a variety of catalytic activities that starts with the production of cyclic oligoadenylate (cOA) second messenger molecules. These messenger molecules can activate an extensive arsenal of ancillary effector proteins carrying the appropriate sensory domain. Notably, the CARF and SAVED effector proteins have been responsible for renewed interest in type III CRISPR-Cas due to the extraordinary diversity of defenses against invading genetic elements. Whereas only a handful of CARF and SAVED proteins have been studied so far, many of them seem to provoke abortive infection, aimed to kill the host and provide population-wide immunity. A defining feature of these effector proteins is the variety of in silico-predicted catalytic domains they are fused to. In this mini-review, we discuss all currently characterized type III-associated CARF and SAVED effector proteins, highlight a few examples of predicted CARF and SAVED proteins with interesting predicted catalytic activities, and speculate how they could contribute to type III immunity.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , RNA, Guide, Kinetoplastida , Second Messenger Systems , Catalytic Domain
4.
Nat Commun ; 12(1): 5033, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413302

ABSTRACT

Characteristic properties of type III CRISPR-Cas systems include recognition of target RNA and the subsequent induction of a multifaceted immune response. This involves sequence-specific cleavage of the target RNA and production of cyclic oligoadenylate (cOA) molecules. Here we report that an exposed seed region at the 3' end of the crRNA is essential for target RNA binding and cleavage, whereas cOA production requires base pairing at the 5' end of the crRNA. Moreover, we uncover that the variation in the size and composition of type III complexes within a single host results in variable seed regions. This may prevent escape by invading genetic elements, while controlling cOA production tightly to prevent unnecessary damage to the host. Lastly, we use these findings to develop a new diagnostic tool, SCOPE, for the specific detection of SARS-CoV-2 from human nasal swab samples, revealing sensitivities in the atto-molar range.


Subject(s)
Adenine Nucleotides/chemistry , COVID-19/diagnosis , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Oligoribonucleotides/chemistry , RNA, Bacterial/genetics , Ribonucleases/metabolism , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Diagnostic Tests, Routine/methods , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
5.
Cell Host Microbe ; 29(5): 715-725, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33984274

ABSTRACT

CRISPR-Cas systems provide bacteria and archaea with adaptive, heritable immunity against their viruses (bacteriophages and phages) and other parasitic genetic elements. CRISPR-Cas systems are highly diverse, and we are only beginning to understand their relative importance in phage defense. In this review, we will discuss when and why CRISPR-Cas immunity against phages evolves, and how this, in turn, selects for the evolution of immune evasion by phages. Finally, we will discuss our current understanding of if, and when, we observe coevolution between CRISPR-Cas systems and phages, and how this may be influenced by the mechanism of CRISPR-Cas immunity.


Subject(s)
Bacteria/genetics , Bacteria/virology , Bacteriophages/physiology , Biological Evolution , CRISPR-Cas Systems , Bacteria/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Host-Pathogen Interactions
6.
iScience ; 24(3): 102201, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33733066

ABSTRACT

We reveal the cryo-electron microscopy structure of a type IV-B CRISPR ribonucleoprotein (RNP) complex (Csf) at 3.9-Å resolution. The complex best resembles the type III-A CRISPR Csm effector complex, consisting of a Cas7-like (Csf2) filament intertwined with a small subunit (Cas11) filament, but the complex lacks subunits for RNA processing and target DNA cleavage. Surprisingly, instead of assembling around a CRISPR-derived RNA (crRNA), the complex assembles upon heterogeneous RNA of a regular length arranged in a pseudo-A-form configuration. These findings provide a high-resolution glimpse into the assembly and function of enigmatic type IV CRISPR systems, expanding our understanding of class I CRISPR-Cas system architecture, and suggesting a function for type IV-B RNPs that may be distinct from other class 1 CRISPR-associated systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...