Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 33(7): e17304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421113

ABSTRACT

Glacial cycles lead to periodic population interbreeding and isolation in warm-adapted species, which impact genetic structure and evolution. However, the effects of these processes on highly mobile and more cold-tolerant species are not well understood. This study aims to shed light on the phylogeographic history of Aglais urticae, a butterfly species with considerable dispersal ability, and a wide Palearctic distribution reaching the Arctic. Through the analysis of genomic data, four main genetic lineages are identified: European, Sierra Nevada, Sicily/Calabria/Peloponnese, and Eastern. The results indicate that the Sardo-Corsican endemic taxon ichnusa is a distinct species. The split between the relict lineages in southern Europe and the main European lineage is estimated to have happened 400-450 thousand years ago, with admixture observed during the Quaternary glacial cycles, and still ongoing, albeit to a much smaller extent. These results suggest that these lineages may be better treated as subspecific parapatric taxa. Ecological niche modelling supported the existence of both Mediterranean and extra-Mediterranean refugia during the glacial periods, with the main one located on the Atlantic coast. Nevertheless, gene flow between populations was possible, indicating that both differentiation and admixture have acted continuously across glacial cycles in this cold-tolerant butterfly, generally balancing each other but producing differentiated lineages in the southern peninsulas. We conclude that the population dynamics and the processes shaping the population genetic structure of cold-adapted species during the Quaternary ice ages may be different than those classically accepted for warm-adapted species.


Subject(s)
Butterflies , Genetic Variation , Animals , Phylogeny , Genetic Variation/genetics , Butterflies/genetics , Phylogeography , Europe
2.
Glob Chang Biol ; 29(12): 3271-3284, 2023 06.
Article in English | MEDLINE | ID: mdl-36924241

ABSTRACT

At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity-stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.


Subject(s)
Butterflies , Ecosystem , Animals , Biodiversity , Bayes Theorem , Europe
4.
Oecologia ; 199(2): 427-439, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35616737

ABSTRACT

Understanding population responses to environmental conditions is key in the current context of climate change and the extreme climatic events that are threatening biodiversity in an unprecedented way. In this work, we provide a framework for understanding butterfly population responses to weather and extreme climatic seasons by taking into account topographic heterogeneity, species' life-cycles and density-dependent processes. We used a citizen-science database of Mediterranean butterflies that contains long-term population data (28 years) on 78 butterfly species from 146 sites in the Mediterranean mesic and alpine climate regions. Climatic data were obtained from 93 meteorological stations operating during this period near the butterfly sites. We studied how seasonal precipitation and temperature affect population growth while taking into account the effects of density dependence. Our results reveal (i) the beneficial effects of winter and spring precipitation for butterfly populations, which are most evident in the Mediterranean region and in univoltine species, and mainly affect the larval stage; (ii) a general negative effect of summer rain in the previous year, which affects the adult stage; and (iii) a consistent negative effect of mild autumns and winters on population growth. In addition, density dependence played a major role in the population dynamics of most species, except for those with long-term negative population trends. Our analyses also provide compelling evidence that both extreme population levels in previous years and extreme climatic seasons in the current year provoke population crashes and explosions, especially in the Mediterranean mesic region.


Subject(s)
Butterflies , Animals , Butterflies/physiology , Climate Change , Ecosystem , Population Dynamics , Seasons , Weather
5.
Proc Biol Sci ; 289(1973): 20220251, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35473386

ABSTRACT

Although climate-driven phenological shifts have been documented for many taxa across the globe, we still lack knowledge of the consequences they have on populations. Here, we used a comprehensive database comprising 553 populations of 51 species of north-western Mediterranean butterflies to investigate the relationship between phenology and population trends in a 26-year period. Phenological trends and sensitivity to climate, along with various species traits, were used to predict abundance trends. Key ecological traits accounted for a general decline of more than half of the species, most of which, surprisingly, did not change their phenology under a climate warming scenario. However, this was related to the regional cooling in a short temporal window that includes late winter and early spring, during which most species concentrate their development. Finally, we demonstrate that phenological sensitivity-but not phenological trends-predicted population trends, and argue that species that best adjust their phenology to inter-annual climate variability are more likely to maintain a synchronization with trophic resources, thereby mitigating possible negative effects of climate change. Our results reflect the importance of assessing not only species' trends over time but also species' abilities to respond to a changing climate based on their sensitivity to temperature.


Subject(s)
Butterflies , Animals , Climate Change , Phenotype , Seasons , Temperature
6.
J Anim Ecol ; 91(5): 1010-1023, 2022 05.
Article in English | MEDLINE | ID: mdl-35297500

ABSTRACT

Parasitism is a key factor in the population dynamics of many herbivorous insects, although its impact on host populations varies widely, for instance, along latitudinal and altitudinal gradients. Understanding the sources of geographical variation in host-parasitoid interactions is crucial for reliably predicting the future success of the interacting species under a context of global change. Here, we examine larval parasitism in the butterfly Aglais urticae in south-west Europe, where it is a mountain specialist. Larval nests were sampled over 2 years along altitudinal gradients in three Iberian mountain ranges, including the Sierra Nevada, home to its southernmost European population. Additional data on nettle condition and adult butterflies were obtained in the study areas. These data sources were used to investigate whether or not differences in parasitism rates are related to the geographical position and phenology of the host, and to the availability of the host plants. Phenological differences in the host populations between regions were related to the severity of summer drought and the corresponding differences in host plant availability. At the trailing-edge of its distribution, the butterfly's breeding season was restricted to the end of winter and spring, while in its northern Iberian range the season was prolonged until mid-summer. Although parasitism was an important source of mortality in all regions, parasitism rates and parasitoid richness were highest in the north and lowest in the south. Moreover, within a region, there was a notable increase in parasitism rates over time, which probably led to selection against an additional late summer host generation in northern regions. Conversely, the shorter breeding season in Sierra Nevada resulted in a loss of synchrony between the host and one important late season parasitoid, Sturmia bella, which may partly explain the high density of this butterfly species at the trailing-edge of its range. Our results support the key role of host phenology in accounting for differences in parasitism rates between populations. They also provide insights into how climate through host plant availability affects host phenology and, ultimately, the impact of parasitism on host populations.


Subject(s)
Butterflies , Herbivory , Animals , Larva , Plant Breeding , Plants
7.
Commun Biol ; 5(1): 143, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177761

ABSTRACT

Climatic anomalies are increasing in intensity and frequency due to rapid rates of global change, leading to increased extinction risk for many species. The impacts of anomalies are likely to vary between species due to different degrees of sensitivity and extents of local adaptation. Here, we used long-term butterfly monitoring data of 143 species across six European bioclimatic regions to show how species' population dynamics have responded to local or globally-calculated climatic anomalies, and how species attributes mediate these responses. Contrary to expectations, degree of apparent local adaptation, estimated from the relative population sensitivity to local versus global anomalies, showed no associations with species mobility or reproductive rate but did contain a strong phylogenetic signal. The existence of phylogenetically-patterned local adaptation to climate has important implications for forecasting species responses to current and future climatic conditions and for developing appropriate conservation practices.


Subject(s)
Adaptation, Physiological/genetics , Butterflies/genetics , Butterflies/physiology , Climate , Ecosystem , Phylogeny , Animal Distribution , Animals , Computer Simulation , Europe , Phylogeography
8.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34155114

ABSTRACT

Many latitudinal insect migrants including agricultural pests, disease vectors, and beneficial species show huge fluctuations in the year-to-year abundance of spring immigrants reaching temperate zones. It is widely believed that this variation is driven by climatic conditions in the winter-breeding regions, but evidence is lacking. We identified the environmental drivers of the annual population dynamics of a cosmopolitan migrant butterfly (the painted lady Vanessa cardui) using a combination of long-term monitoring and climate and atmospheric data within the western part of its Afro-Palearctic migratory range. Our population models show that a combination of high winter NDVI (normalized difference vegetation index) in the Savanna/Sahel of sub-Saharan Africa, high spring NDVI in the Maghreb of North Africa, and frequent favorably directed tailwinds during migration periods are the three most important drivers of the size of the immigration to western Europe, while our atmospheric trajectory simulations demonstrate regular opportunities for wind-borne trans-Saharan movements. The effects of sub-Saharan vegetative productivity and wind conditions confirm that painted lady populations on either side of the Sahara are linked by regular mass migrations, making this the longest annual insect migration circuit so far known. Our results provide a quantification of the environmental drivers of large annual population fluctuations of an insect migrant and hold much promise for predicting invasions of migrant insect pests, disease vectors, and beneficial species.


Subject(s)
Animal Migration/physiology , Butterflies/physiology , Environment , Africa, Northern , Animals , Computer Simulation , Desert Climate , Europe , Geography , Mediterranean Region , Population Density , Population Dynamics , Seasons , Wind
9.
Ecotoxicol Environ Saf ; 207: 111215, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32927159

ABSTRACT

Field cultivation of Genetically Modified (GM) Bt-plants has a potential environmental risk toward non-target Lepidoptera (NTLs) larvae through the consumption of Bt-maize pollen. The Bt-maize Cry protein targeting Lepidoptera species detrimental to the crop is also expressed in pollen which is dispersed by wind and can thus reach habitats of NTLs. To better assess the current ecological risk of Bt-maize at landscape scales, we developed a spatially-explicit exposure-hazard model considering (i) the dynamics of pollen dispersal obtained by convolving GM plants emission with a dispersal kernel and (ii) a toxicokinetic-toxicodynamic (TKTD) model accounting for the impact of toxin ingestion on individual lethal effects. We simulated the model using real landscape observations in Catalonia (Spain): GM-maize locations, flowering dates, rainfall time series and larvae emergence date of the European peacock butterfly Aglais io. While in average, the additional mortality appears to be negligible, we show significant additional mortality at sub-population level, with for instance a mortality higher than 40% within the 10m for the 10% most Bt-sensitive individuals. Also, using Pareto optimality we capture the best trade-off between isolation distance and additional mortality: up to 50 m are required to significantly buffer Bt-pollen impact on NTLs survival at the individual level. Our study clears up the narrow line between diverging conclusions: those claiming no risk by only looking at the average regional effect of Bt on NTLs survival and those pointing out a significant threaten when considering the variability of individuals mortality.


Subject(s)
Bacillus thuringiensis Toxins/toxicity , Butterflies/physiology , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Plants, Genetically Modified/physiology , Zea mays/physiology , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/metabolism , Butterflies/drug effects , Butterflies/metabolism , Endotoxins/metabolism , Hemolysin Proteins/genetics , Larva/drug effects , Plants, Genetically Modified/metabolism , Pollen , Spain , Zea mays/genetics
10.
Ecology ; 101(7): e03046, 2020 07.
Article in English | MEDLINE | ID: mdl-32222070

ABSTRACT

Ecological communities are dynamic entities subjected to extinction/colonization events. Because species are connected through complex interaction networks, the arrival of a new species is likely to affect various species across the community, as observed in plant biological invasions. However, plant invasions usually represent extreme scenarios in which the community is strongly dominated by the alien species, confounding the effects of a change in species composition with a massive increase in floral resource availability. Our study addresses changes in plant community composition involving native species, a common phenomenon under the current climate change scenario in which plants are modifying their distribution ranges. We experimentally manipulated patches of a natural scrubland community by introducing a native plant (henceforth colonizing plant). To avoid introducing a disproportionate amount of floral resources we adjusted the number of flowers of the colonizing plant to the amount of floral resources locally available in each patch. We had two objectives: (1) to analyse the effects of the arrival of a new plant on the pollinator community, the rearrangement of plant-pollinator interactions and the structure of the plant-pollinator network; (2) to evaluate potential consequences for pollination and the reproductive success of resident plant species. The colonizing plant acted as a magnet species, attracting bumble bees and facilitating interactions to other plants through spill-over. The introduction of the colonizing plant also affected the structure of plant-pollinator networks (colonized networks were more generalized and more nested than control networks) and modified the arrangement of plant and pollinator species into modules. Ultimately, these changes resulted in higher heterospecific (but not conspecific) pollen deposition and had contrasting effects on the reproductive success of two resident plant species (higher fruit set and lower seed set, respectively). Our study shows that relationships between plants and pollinators are rapidly rearranged in response to novel situations (even when the new plant is not overly dominant), with important functional consequences on pollination and plant reproductive success. Our study establishes a link between network structure and pollination and plant reproductive success, which may be mediated by differences among pollinator species in foraging behavior.


Subject(s)
Plants , Pollination , Animals , Bees , Flowers , Pollen , Reproduction
11.
Nat Commun ; 10(1): 5757, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848330

ABSTRACT

Tradeoffs affect resource allocation during development and result in fitness consequences that drive the evolution of life history strategies. Yet despite their importance, we know little about the mechanisms underlying life history tradeoffs. Many species of Colias butterflies exhibit an alternative life history strategy (ALHS) where females divert resources from wing pigment synthesis to reproductive and somatic development. Due to this reallocation, a wing color polymorphism is associated with the ALHS: either yellow/orange or white. Here we map the locus associated with this ALHS in Colias crocea to a transposable element insertion located downstream of the Colias homolog of BarH-1, a homeobox transcription factor. Using CRISPR/Cas9 gene editing, antibody staining, and electron microscopy we find white-specific expression of BarH-1 suppresses the formation of pigment granules in wing scales and gives rise to white wing color. Lipid and transcriptome analyses reveal physiological differences associated with the ALHS. Together, these findings characterize a mechanism for a female-limited ALHS.


Subject(s)
Butterflies/physiology , DNA Transposable Elements/genetics , Genetic Loci , Homeodomain Proteins/genetics , Life History Traits , Animals , CRISPR-Cas Systems/genetics , Color , Female , Gene Editing/methods , Gene Expression Profiling , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Male , Pigmentation/genetics , Pigments, Biological/biosynthesis , Reproduction/genetics , Sex Factors , Whole Genome Sequencing , Wings, Animal/metabolism , Wings, Animal/ultrastructure
12.
Nat Commun ; 10(1): 3109, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337752

ABSTRACT

Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.


Subject(s)
Acclimatization/physiology , Birds/physiology , Climate Change , Phenotype , Animals , Selection, Genetic/physiology , Time Factors
13.
Sci Rep ; 9(1): 5680, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952919

ABSTRACT

The climatic preferences of the species determine to a large extent their response to climate change. Temperature preferences have been shown to play a key role in driving trends in animal populations. However, the relative importance of temperature and precipitation preferences is still poorly understood, particularly in systems where ecological processes are strongly constrained by the amount and timing of rainfall. In this study, we estimated the role played by temperature and precipitation preferences in determining population trends for birds and butterflies in a Mediterranean area. Trends were derived from long-term biodiversity monitoring data and temperature and precipitation preferences were estimated from species distribution data at three different geographical scales. We show that population trends were first and foremost related to precipitation preferences both in birds and in butterflies. Temperature preferences had a weaker effect on population trends, and were significant only in birds. The effect of precipitation on population trends operated in opposite directions in the two groups of species: butterfly species from arid environments and bird species from humid habitats are decreasing most. Our results indicate that, although commonly neglected, water availability is likely an important driver of animal population change in the Mediterranean region, with highly contrasting impacts among taxonomical groups.


Subject(s)
Birds/physiology , Butterflies/physiology , Animals , Biodiversity , Climate Change , Ecosystem , Mediterranean Region , Population Dynamics , Seasons , Temperature
14.
J Anim Ecol ; 88(3): 376-391, 2019 03.
Article in English | MEDLINE | ID: mdl-30480313

ABSTRACT

Widespread population declines have been reported for diverse Mediterranean butterflies over the last three decades, and have been significantly associated with increased global change impacts. The specific landscape and climatic drivers of these declines remain uncertain for most declining species. Here, we analyse whether plastic phenotypic traits of a model butterfly species (Pieris napi) perform as reliable biomarkers of vulnerability to extreme temperature impacts in natural populations, showing contrasting trends in thermally exposed and thermally buffered populations. We also examine whether improved descriptions of thermal exposure of insect populations can be achieved by combining multiple information sources (i.e., integrating measurements of habitat thermal buffering, habitat thermal amplification, host plant transpiration, and experimental assessments of thermal death time (TDT), thermal avoidance behaviour (TAB) and thermally induced trait plasticity). These integrative analyses are conducted in two demographically declining and two non-declining populations of P. napi. The results show that plastic phenotypic traits (butterfly body mass and wing size) are reliable biomarkers of population vulnerability to extreme thermal conditions. Butterfly wing size is strongly reduced only in thermally exposed populations during summer drought periods. Laboratory rearing of these populations documented reduced wing size due to significant negative effects of increased temperatures affecting larval growth. We conclude that these thermal biomarkers are indicative of the population vulnerability to increasing global warming impacts, showing contrasting trends in thermally exposed and buffered populations. Thermal effects in host plant microsites significantly differ between populations, with stressful thermal conditions only effectively ameliorated in mid-elevation populations. In lowland populations, we observe a sixfold reduction in vegetation thermal buffering effects, and larval growth occurs in these populations at significantly higher temperatures. Lowland populations show reduced host plant quality (C/N ratio), reduced leaf transpiration rates and complete above-ground plant senescence during the peak of summer drought. Amplified host plant temperatures are observed in open microsites, reaching thermal thresholds that can affect larval survival. Overall, our results suggest that butterfly population vulnerability to long-term drought periods is associated with multiple co-occurring and interrelated ecological factors, including limited vegetation thermal buffering effects at lowland sites, significant drought impacts on host plant transpiration and amplified leaf surface temperature, as well as reduced leaf quality linked to the seasonal advance of plant phenology. Our results also identify multiannual summer droughts affecting larval growing periods as a key driver of the recently reported butterfly population declines in the Mediterranean biome.


Subject(s)
Butterflies , Droughts , Animals , Biomarkers , Plants , Temperature
15.
J Insect Physiol ; 107: 257-264, 2018.
Article in English | MEDLINE | ID: mdl-29580782

ABSTRACT

Across a wide range of taxa, individuals within populations exhibit alternative life history strategies (ALHS) where their phenotypes dramatically differ due to divergent investments in growth, reproduction and survivorship, with the resulting trade-offs directly impacting Darwinian fitness. Though the maintenance of ALHS within populations is fairly well understood, little is known regarding the physiological mechanisms that underlie ALHS and how environmental conditions can affect the evolution and expression of these phenotypes. One such ALHS, known as Alba, exists within females of many species in the butterfly genus Colias. Previous works in New World species not only found that female morphs differ in their wing color due to a reallocation of resources away from the synthesis of wing pigments to other areas of development, but also that temperature played an important role in these trade-offs. Here we build on previous work conducted in New World species by measuring life history traits and conducting lipidomics on individuals reared at hot and cold temperatures in the Old World species Colias croceus. Results suggest that the fitness of Alba and orange morphs likely varies with rearing temperature, where Alba females have higher fitness in cold conditions and orange in warm. Additionally shared traits between Old and New World species suggest the Alba mechanism is likely conserved across the genus. Finally, in the cold treatment we observe an intermediate yellow morph that may have decreased fitness due to slower larval development. This cost may manifest as disruptive selection in the field, thereby favoring the maintenance of the two discrete morphs. Taken together these results add insights into the evolution of, and the selection on, the Alba ALHS.


Subject(s)
Butterflies/physiology , Life History Traits , Phenotype , Wings, Animal/physiology , Animals , Female , Gene-Environment Interaction , Pigmentation/physiology , Temperature
16.
Biol Lett ; 12(10)2016 10.
Article in English | MEDLINE | ID: mdl-27703055

ABSTRACT

The painted lady, Vanessa cardui, is a migratory butterfly that performs an annual multi-generational migration between Europe and North Africa. Its seasonal appearance south of the Sahara in autumn is well known and has led to the suggestion that it results from extremely long migratory flights by European butterflies to seasonally exploit the Sahel and the tropical savannah. However, this possibility has remained unproven. Here, we analyse the isotopic composition of butterflies from seven European and seven African countries to provide new support for this hypothesis. Each individual was assigned a geographical natal origin, based on its wing stable hydrogen isotope (δ2Hw) value and a predicted δ2Hw basemap for Europe and northern Africa. Natal assignments of autumn migrants collected south of the Sahara confirmed long-distance movements (of 4000 km or more) starting in Europe. Samples from Maghreb revealed a mixed origin of migrants, with most individuals with a European origin, but others having originated in the Sahel. Therefore, autumn movements are not only directed to northwestern Africa, but also include southward and northward flights across the Sahara. Through this remarkable behaviour, the productive but highly seasonal region south of the Sahara is incorporated into the migratory circuit of V. cardui.


Subject(s)
Butterflies/physiology , Africa , Animal Migration , Animals , Europe , Grassland , Seasons , Wings, Animal/chemistry
17.
J Plant Physiol ; 172: 82-91, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25270104

ABSTRACT

Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses.


Subject(s)
Biodiversity , Carbon Cycle , Food Chain , Nitrogen Cycle , Phosphorus/metabolism , Plant Physiological Phenomena , Biomass , Ecosystem
18.
J Anim Ecol ; 83(1): 276-85, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23957287

ABSTRACT

Many species are found today in the form of fragmented populations occupying patches of remnant habitat in human-altered landscapes. The persistence of these population networks requires a balance between extinction and colonization events assumed to be primarily related to patch area and isolation, but the contribution of factors such as the characteristics of patch and matrix habitats, the species' traits (habitat specialization and dispersal capabilities) and variation in climatic conditions have seldom been evaluated simultaneously. The identification of environmental variables associated with patch occupancy and turnover may be especially useful to enhance the persistence of multiple species under current global change. However, for robust inference on occupancy and related parameters, we must account for detection errors, a commonly overlooked problem that leads to biased estimates and misleading conclusions about population dynamics. Here, we provide direct empirical evidence of the effects of different environmental variables on the extinction and colonization rates of a rich butterfly community in the western Mediterranean. The analysis was based on a 17-year data set containing detection/nondetection data on 73 butterfly species for 26 sites in north-eastern Spain. Using multiseason occupancy models, which take into account species' detectability, we were able to obtain robust estimates of local extinction and colonization probabilities for each species and test the potential effects of site covariates such as the area of suitable habitat, topographic variability, landscape permeability around the site and climatic variability in aridity conditions. Results revealed a general pattern across species with local habitat composition and landscape features as stronger predictors of occupancy dynamics compared with topography and local aridity. Increasing area of suitable habitat in a site strongly decreased local extinction risks and, for a number of species, both higher amounts of suitable habitat and more permeable landscapes increased colonization rates. Nevertheless, increased topographic variability decreased the extinction risk of bad dispersers, a group of species with significantly lower colonization rates. Our models predicted higher sensitivity of the butterfly assemblages to deterministic changes in habitat features rather than to stochastic weather patterns, with some relationships being clearly dependent on the species' traits.


Subject(s)
Butterflies/physiology , Climate , Ecosystem , Animals , Demography , Mediterranean Region , Models, Biological , Time Factors
19.
Mol Ecol ; 22(18): 4753-66, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23927539

ABSTRACT

Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host-associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host-adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host-adapted traits, resulting in incipient reproductive isolation among host-associated ecotypes. We show here that Euphydryas aurinia had much weaker host-associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host-adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.


Subject(s)
Butterflies/genetics , Ecotype , Genetics, Population , Genome, Insect , Adaptation, Biological/genetics , Amplified Fragment Length Polymorphism Analysis , Animals , Butterflies/classification , California , Ecosystem , Female , Gene Flow , Microsatellite Repeats , Oregon , Oviposition , Phenotype , Reproductive Isolation , Selection, Genetic , Spain , Species Specificity
20.
Biol Lett ; 8(4): 590-3, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22491762

ABSTRACT

Different vegetation types can generate variation in microclimates at local scales, potentially buffering species from adverse climates. To determine if species could respond to such microclimates under climatic warming, we evaluated whether ectothermic species (butterflies) can exploit favourable microclimates and alter their use of different habitats in response to year-to-year variation in climate. In both relatively cold (Britain) and warm (Catalonia) regions of their geographical ranges, most species shifted into cooler, closed habitats (e.g. woodland) in hot years, and into warmer, open habitats (e.g. grassland) in cooler years. Additionally, three-quarters of species occurred in closed habitats more frequently in the warm region than in the cool region. Thus, species shift their local distributions and alter their habitat associations to exploit favourable microclimates, although the magnitude of the shift (approx. 1.3% of individuals from open to shade, per degree Celsius) is unlikely to buffer species from impacts of regional climate warming.


Subject(s)
Butterflies/physiology , Ecosystem , Microclimate , Animals , Cold Temperature , Environmental Monitoring/methods , Geography , Hot Temperature , Population Dynamics , Seasons , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...