Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(50): 18424-18436, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38051205

ABSTRACT

Lipids, and cationic lipids in particular are of interest as delivery vectors for hydrophobic drugs such as the cancer therapeutic paclitaxel, and the structures of lipid assemblies affect their efficacy. We investigated the effect of incorporating the multivalent cationic lipid MVL5 (+5e) and poly(ethylene glycol)-lipids (PEG-lipids), alone and in combination, on the structure of fluid-phase lipid assemblies of the charge-neutral lipid 1,2-dioleoyl-sn-glycero-phosphocholine (DOPC). This allowed us to elucidate lipid-assembly structure correlations in sonicated formulations with high charge density, which are not accessible with univalent lipids such as the well-studied DOTAP (+1e). Cryogenic transmission electron microscopy (cryo-TEM) allowed us to determine the structure of the lipid assemblies, revealing diverse combinations of vesicles and disc-shaped, worm-like, and spherical micelles. Remarkably, MVL5 forms an essentially pure phase of disc micelles at 50 mol % MVL5. At a higher (75 mol %) content of MVL5, short- and intermediate-length worm-like micellar rods were observed, and in ternary mixtures with PEG-lipid, longer and highly flexible worm-like micelles formed. Independent of their length, the worm-like micelles coexisted with spherical micelles. In stark contrast, DOTAP forms mixtures of vesicles, disc micelles, and spherical micelles at all studied compositions, even when combined with PEG-lipids. The observed similarities and differences in the effects of charge (multivalent versus univalent) and high curvature (multivalent charge versus PEG-lipid) on the assembly structure provide insights into parameters that control the size of fluid lipid nanodiscs, relevant for future applications.


Subject(s)
Micelles , Phosphatidylcholines , Phosphatidylcholines/chemistry , Fatty Acids, Monounsaturated , Microscopy, Electron, Transmission , Liposomes/chemistry
2.
ACS Appl Mater Interfaces ; 14(51): 56613-56622, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36521233

ABSTRACT

Novel approaches are required to address the urgent need to develop lipid-based carriers of paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1) have shown promise in preclinical and late-stage clinical studies. Recent work found that the addition of a cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer cells at PEG coverage in the brush regime (10 mol % PEG-lipid). Here, we studied the PTX loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast-cancer-bearing immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol % of a PEG-lipid (PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and nanodiscsPTX was able to incorporate up to 2.5 mol % PTX without crystallization for at least 20 h. Remarkably, compared to preparations containing 2 and 5 mol % PEG5K-lipid (with the PEG chains in the mushroom regime), the particles at 10 mol % (with PEG chains in the brush regime) showed significantly higher blood half-life, tumor penetration, and proapoptotic activity. Our study suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their pharmacokinetics and therapeutic efficacy.


Subject(s)
Antineoplastic Agents, Phytogenic , Breast Neoplasms , Mice , Humans , Animals , Female , Paclitaxel/chemistry , Liposomes/chemistry , Tissue Distribution , Caspase 3 , Polyethylene Glycols/chemistry , Lipids , Breast Neoplasms/drug therapy , Drug Carriers/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/chemistry
3.
Pharmaceutics ; 13(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34575441

ABSTRACT

Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure-activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL-NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL-NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases.

4.
Sci Rep ; 11(1): 7311, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790325

ABSTRACT

Lipid carriers of hydrophobic paclitaxel (PTX) are used in clinical trials for cancer chemotherapy. Improving their loading capacity requires enhanced PTX solubilization. We compared the time-dependence of PTX membrane solubility as a function of PTX content in cationic liposomes (CLs) with lipid tails containing one (oleoyl; DOPC/DOTAP) or two (linoleoyl; DLinPC/newly synthesized DLinTAP) cis double bonds by using microscopy to generate kinetic phase diagrams. The DLin lipids displayed significantly increased PTX membrane solubility over DO lipids. Remarkably, 8 mol% PTX in DLinTAP/DLinPC CLs remained soluble for approximately as long as 3 mol% PTX (the solubility limit, which has been the focus of most previous studies and clinical trials) in DOTAP/DOPC CLs. The increase in solubility is likely caused by enhanced molecular affinity between lipid tails and PTX, rather than by the transition in membrane structure from bilayers to inverse cylindrical micelles observed with small-angle X-ray scattering. Importantly, the efficacy of PTX-loaded CLs against prostate cancer cells (their IC50 of PTX cytotoxicity) was unaffected by changing the lipid tails, and toxicity of the CL carrier was negligible. Moreover, efficacy was approximately doubled against melanoma cells for PTX-loaded DLinTAP/DLinPC over DOTAP/DOPC CLs. Our findings demonstrate the potential of chemical modifications of the lipid tails to increase the PTX membrane loading while maintaining (and in some cases even increasing) the efficacy of CLs. The increased PTX solubility will aid the development of liposomal PTX carriers that require significantly less lipid to deliver a given amount of PTX, reducing side effects and costs.


Subject(s)
Antineoplastic Agents/administration & dosage , Linoleic Acids/chemistry , Liposomes/chemistry , Oleic Acid/chemistry , Paclitaxel/administration & dosage , Antineoplastic Agents/toxicity , Fatty Acids, Monounsaturated/chemistry , Humans , PC-3 Cells , Paclitaxel/toxicity , Phosphatidylcholines/chemistry , Quaternary Ammonium Compounds/chemistry
5.
ACS Appl Mater Interfaces ; 12(41): 45728-45743, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32960036

ABSTRACT

Hierarchical assembly of building blocks via competing, orthogonal interactions is a hallmark of many of nature's composite materials that do not require highly specific ligand-receptor interactions. To mimic this assembly mechanism requires the development of building blocks capable of tunable interactions. In the present work, we explored the interplay between repulsive (steric and electrostatic) and attractive hydrophobic forces. The designed building blocks allow hydrophobic forces to effectively act at controlled, large distances, to create and tune the assembly of membrane-based building blocks under dilute conditions, and to affect their interactions with cellular membranes via physical cross-bridges. Specifically, we employed double-end-anchored poly(ethylene glycol)s (DEA-PEGs)-hydrophilic PEG tethers with hydrophobic tails on both ends. Using differential-interference-contrast optical microscopy, synchrotron small-angle X-ray scattering (SAXS), and cryogenic electron microscopy, we investigated the ability of DEA-PEGs to mediate assembly in the dilute regime on multiple length scales and on practical time scales. The PEG length, anchor hydrophobicity, and molar fraction of DEA-PEG molecules within a membrane strongly affect the assembly properties. Additional tuning of the intermembrane interactions can be achieved by adding repulsive interactions via PEG-lipids (steric) or cationic lipids to the DEA-PEG-mediated attractions. While the optical and electron microscopy imaging methods provided qualitative evidence of the ability of DEA-PEGs to assemble liposomes, the SAXS measurements and quantitative line-shape analysis in dilute preparations demonstrated that the ensemble average of loosely organized liposomal assemblies maintains DEA-PEG concentration-dependent tethering on defined nanometer length scales. For cationic liposome-DNA nanoparticles (CL-DNA NPs), aggregation induced by DEA-PEGs decreased internalization of NPs by cells, but tuning the DEA-PEG-induced attractions by adding repulsive steric interactions via PEG-lipids limited aggregation and increased NP uptake. Furthermore, confocal microscopy imaging together with colocalization studies with Rab11 and LysoTracker as markers of intracellular pathways showed that modifying CL-DNA NPs with DEA-PEGs alters their interactions with the plasma and endosomal membranes.


Subject(s)
Polymers/chemistry , DNA/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Microscopy, Confocal , Nanoparticles/chemistry , PC-3 Cells , Particle Size , Surface Properties , Tumor Cells, Cultured
6.
ACS Appl Mater Interfaces ; 12(1): 151-162, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31820904

ABSTRACT

Poly(ethylene glycol) (PEG) is a polymer used widely in drug delivery to create "stealth" nanoparticles (NPs); PEG coatings suppress NP detection and clearance by the immune system and beneficially increase NP circulation time in vivo. However, NP PEGylation typically obstructs cell attachment and uptake in vitro compared to the uncoated equivalent. Here, we report on a cationic liposome (CL) NP system loaded with the hydrophobic cancer drug paclitaxel (PTX) in which PEGylation (i.e., PEG-CLPTX NPs) unexpectedly enhances, rather than diminishes, delivery efficacy and cytotoxicity to human cancer cells. This highly unexpected enhancement occurs even when the PEG-chains coating the NP are in the transition regime between the mushroom and brush conformations. Cryogenic transmission electron microscopy (TEM) of PEG-CLPTX NPs shows that PEG causes the proliferation of a mixture of sterically stabilized nanometer-scale vesicles and anisotropic micelles (e.g., bicelles). Remarkably, the onset of bicelles at sub-monolayer concentrations of the PEG coat has to our knowledge not been previously reported; it was previously thought that PEG-lipid in this composition regime was incorporated into vesicles but did not alter their shape. Confocal microscopy and flow cytometry reveal significantly greater PTX cell uptake from stabilized PEG-CLPTX NPs (vesicles and bicelles) in contrast to bare CLPTX NPs, which can aggregate in cell medium. This underscores the ability of steric stabilization to facilitate NP entry into cells via distinct size-dependent endocytic pathways, some of which cannot transport large NP aggregates into cells. This study highlights the value of understanding how PEGylation alters NP shape and structure, and thus NP efficacy, to design next-generation stealth drug carriers that integrate active cell-targeting strategies into NPs for in vivo delivery.


Subject(s)
Neoplasms , Polyethylene Glycols/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Humans , Liposomes , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , PC-3 Cells , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology
7.
Biomaterials ; 145: 242-255, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28889081

ABSTRACT

Lipid-based particles are used worldwide in clinical trials as carriers of hydrophobic paclitaxel (PTXL) for cancer chemotherapy, albeit with little improvement over the standard-of-care. Improving efficacy requires an understanding of intramembrane interactions between PTXL and lipids to enhance PTXL solubilization and suppress PTXL phase separation into crystals. We studied the solubility of PTXL in cationic liposomes (CLs) composed of positively charged 2,3-dioleyloxypropyltrimethylammonium chloride (DOTAP) and neutral 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) as a function of PTXL membrane content and its relation to efficacy. Time-dependent kinetic phase diagrams were generated from observations of PTXL crystal formation by differential-interference-contrast microscopy. Furthermore, a new synchrotron small-angle x-ray scattering in situ methodology applied to DOTAP/DOPC/PTXL membranes condensed with DNA enabled us to detect the incorporation and time-dependent depletion of PTXL from membranes by measurements of variations in the membrane interlayer and DNA interaxial spacings. Our results revealed three regimes with distinct time scales for PTXL membrane solubility: hours for >3 mol% PTXL (low), days for ≈ 3 mol% PTXL (moderate), and ≥20 days for < 3 mol% PTXL (long-term). Cell viability experiments on human cancer cell lines using CLPTXL nanoparticles (NPs) in the distinct CLPTXL solubility regimes reveal an unexpected dependence of efficacy on PTXL content in NPs. Remarkably, formulations with lower PTXL content and thus higher stability show higher efficacy than those formulated at the membrane solubility limit of ≈3 mol% PTXL (which has been the focus of most previous physicochemical studies and clinical trials of PTXL-loaded CLs). Furthermore, an additional high-efficacy regime is seen on occasion for liposome compositions with PTXL ≥9 mol% applied to cells at short time scales (hours) after formation. At longer time scales (days), CLPTXL NPs with ≥3 mol% PTXL lose efficacy while formulations with 1-2 mol% PTXL maintain high efficacy. Our findings underscore the importance of understanding the relationship of the kinetic phase behavior and physicochemical properties of CLPTXL NPs to efficacy.


Subject(s)
Liposomes/toxicity , Neoplasms/pathology , Paclitaxel/pharmacology , Cations , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Crystallization , DNA/metabolism , Humans , Kinetics , Liposomes/chemistry , Paclitaxel/chemistry , Scattering, Small Angle , Solubility , Synchrotrons , X-Ray Diffraction
8.
Bioorg Med Chem Lett ; 26(6): 1618-1623, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26874401

ABSTRACT

Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.


Subject(s)
DNA/chemistry , Lipids/chemistry , Liposomes/chemistry , Peptides, Cyclic/chemical synthesis , Polyethylene Glycols/chemistry , Cations/chemistry , Humans , Liposomes/chemical synthesis , Molecular Structure , Nanoparticles/chemistry , Peptides, Cyclic/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...